PIONEER Data Acquisition Development

Jack Carlton Advisor: Tim Gorringe

Outline

- I. [3-14] Physics Background/PIONEER goals
 - A. $\pi \rightarrow ev, \pi \rightarrow \mu v$
 - B. Lepton Universality
 - C. Branching Ratio R_{e/u}
 - D. Detector Design
- II. [15-21] Frontend Development
 - A. Proposed DAQ framework
 - B. Midas Framework
 - C. Wavedream UKY teststand
 - D. g-2 Cornell teststand → more versatile frontend
- III. [22-30] Fitting and Compression
 - A. Algorithm
 - B. Bottleneck
 - C. Benchmarking
- IV. [32-34] Future Endeavors
 - A. FPGAs
 - B. November PSI beam time

- Corresponding diagrams for π⁻
- Tau decay forbidden
 - o tau too massive ~ 1000 MeV/c²
 - Pion ~ 100 MeV/c²
- Muon decay more likely
 - branching fraction of 0.999877

Helicity Suppression (Why is Muon Decay Most Likely?)

- Naively, Γ ∝ p' → electron decay more likely
- Weak force only affects left-handed (LH) chiral particle states and right-handed (RH) chiral anti-particle states
- Neutrinos are all LH chirality
- m_v << E means LH neutrino chirality → LH (negative) neutrino helicity
- Conservation of momentum → anti-lepton is LH (negative) helicity

Helicity Suppression (Why is Muon Decay Most Likely?)

 We can write the LH (negative) helicity anti-particle state in the chiral basis:

$$v_{\downarrow} = \frac{A}{2} \left[\left(1 - \frac{p}{E+m} \right) v_R - \left(1 + \frac{p}{E+m} \right) v_L \right] \quad \mathbf{\Pi}$$

 We ignore the LH term (weak force only acts on the RH term), anti-particle's matrix element contribution:

$$\mathcal{M} \sim \frac{1}{2} \left(1 - \frac{p_l}{E_l + m_l} \right) \xrightarrow[m_{\nu} \to 0]{} \frac{m_l}{m_{\pi} + m_l}$$

• This effect ends up making the matrix element smaller \rightarrow decay rate smaller $\Gamma \propto |\mathcal{M}|^2$

Lepton Universality

- States coupling strengths (vertices) g_e = g_μ = g_τ
- Using the Feynman rules for the weak interaction, we can approximate the matrix element

propagator

$$\mathcal{M}_{fi} = \begin{bmatrix} \frac{g_W}{\sqrt{2}} \frac{1}{2} f_\pi p_\pi^\alpha \\ \end{bmatrix} \cdot \begin{bmatrix} \frac{g_{\alpha\beta}}{m_W^2} \end{bmatrix} \cdot \begin{bmatrix} \frac{g_W}{\sqrt{2}} g_l \bar{u}(p_l) \gamma^\beta \frac{1}{2} (1 - \gamma^5) v(p_\nu) \end{bmatrix}$$
Pion vertex

Pion vertex

Lepton vertex

Lepton Universality

After some "massaging" we can find the matrix element to be

$$\mathcal{M}_{fi} = \left(\frac{g_W}{2m_W}\right)^2 f_\pi g_l \cdot \sqrt{m_\pi^2 - m_l^2}$$

Pion spin zero → no spin averaging needed, i.e.:

$$\langle |\mathcal{M}_{fi}|^2 \rangle = |\mathcal{M}_{fi}|^2 = \left(\frac{g_W}{2m_W}\right)^4 f_\pi^2 g_l^2 \cdot (m_\pi^2 - m_l^2)$$

• We can use the general formula for 2-body decay to to find the decay rate

$$\Gamma = \frac{p\langle |\mathcal{M}_{fi}|^2 \rangle}{8\pi m^2} = \frac{f_{\pi}^2}{16\pi^2 m^3} \left(\frac{g_W}{2m_W}\right)^4 \left[m_l g_l (m_{\pi}^2 - m_l^2)\right]^2$$

• Finally, we compute the branching ratio

$$\frac{\Gamma(\pi^- \to e^- \bar{\nu}_e)}{\Gamma(\pi^- \to \mu^- \bar{\nu}_\mu)} = \left(\frac{g_e}{g_\mu}\right)^2 \left[\frac{m_e(m_\pi^2 - m_e^2)}{m_\mu(m_\pi^2 - m_\mu^2)}\right]^2$$

Lepton Universality

$$\frac{\Gamma(\pi^- \to e^- \bar{\nu}_e)}{\Gamma(\pi^- \to \mu^- \bar{\nu}_\mu)} = \left(\frac{g_e}{g_\mu}\right)^2 \left[\frac{m_e(m_\pi^2 - m_e^2)}{m_\mu(m_\pi^2 - m_\mu^2)}\right]^2$$

• Lepton universality assumes $g_e = g_{ij}$, so the first factor disappears

 Improving the branching ratio measurement and comparing to the theoretical value acts as a test of lepton universality

 Another test would consider pure leptonic decays, but such decays involving taus are too rare for high precision measurements

Branching Ratio R_{e/u}

 We can measure the branching ratio by measuring # of decays e and µ decays

$$R_{e/\mu} \equiv \frac{\Gamma(\pi^- \to e^- \bar{\nu}_e)}{\Gamma(\pi^- \to \mu^- \bar{\nu}_\mu)}$$

- Theoretical prediction is simple in first (and second) order
 - No f_π or CKM element V_{ud}

$$R_{e/\mu}^{0} = \left(\frac{g_e}{g_{\mu}}\right)^2 \left[\frac{m_e(m_{\pi}^2 - m_e^2)}{m_{\mu}(m_{\pi}^2 - m_{\mu}^2)}\right]^2$$
= 1 [in theory]

 3rd order correction and beyond the pion structure becomes relevant

$$R_{e/\mu}^{(\text{theory})} = R_{e/\mu}^0 \left(1 - \frac{3\alpha}{\pi} \ln \left(\frac{m_\mu}{m_e} \right) + \dots \right)$$

Current state of $R_{e/\mu}$

$$R_{e/\mu}^{exp}$$
 = 1.2327(23) x 10⁻⁴ (PIENU collab)
 R^{theo} = 1.23524(15) x 10⁻⁴

Consistent with each other

- Expect factor of ~10 precision improvement on experimental value from PIONEER
 - "Catches up" with theoretical uncertainty

Past Experimental Approach (PIENU)

- Nal has a long primary decay time
 - ~ 250 ns
- Event pileup forces the experiment to run at a low rate
 - ~70 kHz
- "inactive target", muons aren't tracked
- Csl Rings for shower leakage detection

PIONEER Experimental Proposal

- LXe (or LYSO) has smaller decay time
 - o ~ 25 ns

- Allows experiment to run at much higher rate
 - ~300kHz (phase 1)
 - ~2000kHz (phase 2 and 3)

 "active target", muons and pions are "tracked"

- in-flight pion decay
- · beam, positron pileup

Active Target (ATAR) Purpose

How PIONEER Will Improve the $R_{e/\mu}$ Measurement

- 4D space-time active pion stopping target (ATAR)
 - \circ Reduce e^{+} energy tail, identify beam pileup, identify $\pi \to \mu V_{\mu}$ decays

- Large acceptance, deep radiation length calorimeter
 - LXE or LYSO for high resolution, fast response, small tail

- Fast electronics, high-speed acquisition
 - o Giga sample/second digitizers, new gen PCle readout

- PSI high intensity pion beams
 - o 2 mA proton beam, large acceptance beamline

Proposed Data Acquisition (DAQ) Framework

Proposed Data Acquisition (DAQ) Framework

arXiv:2203.05505

Midas Framework

- Package of modules for
 - o run control,
 - expt. configuration
 - data readout
 - event building
 - data storage
 - slow control
 - alarm systems
 - etc.

WaveDREAM Teststand

Example Signal

- CAEN module produces and sends "fake" double exponential signal
- WaveDREAM triggers on low voltage signal, sends time window of data
- FE receives data, packages, and compresses it, sends to be stored
- BE stores data, can be remotely accessed

g-2 DAQ set-up

- FE expects a crate of just FC7s (hard-coded in)
 - Send timing information, triggers, etc, to FEs
- Can have as many WFD crates as we want
 - Digitize data to be processed by FE code

g-2 DAQ Modified for November Beam Time

- FE code modified to allow crates with FC7s and WFDs
- More versatile
 - Allows for one crate setups
- Useful for:
 - Beamtime testDAQ
 - Stony Brook DAQ
 - Washington DAQ

Data Rates

arXiv:2203.01981

triggers	prescale	$\frac{\text{range}}{\text{TR(ns)}}$	rate (kHz)	CALO			ATAR digitizer			ATAR high thres	
				$\Delta T(ns)$	chan	MB/s	$\Delta T(ns)$	chan	MB/s	chan	MB/s
PI	1000	-300,700	0.3	200	1000	120	30	66	2.4	20	0.012
CaloH	1	-300,700	0.1	200	1000	40	30	66	0.8	20	0.004
TRACK	50	-300,700	3.4	200	1000	1360	30	66	27	20	0.014
PROMPT	1	2,32	5	200	1000	2000	30	66	40	20	0.2

PIONEER expects data rate of ~3.5GB/s

This is ~100,000 TB/year

Signal Conditioning

- Want a narrow distribution for compression. Let r_i be the numbers we compress
- Methods tried:
 - No conditioning
 - Delta encoding:

$$r_i = y_{i+1} - y_i$$

Twice Delta Encoding:

$$r_i = y_{i+2} - 2y_{i+1} + y_i$$

Double Exponential Fit:

$$r_i = y_i - (A \cdot exp(at_i) + B \cdot exp(bt_i))$$

Shape Fit:

$$r_i = y_i - (A \cdot T(t_i - t_0) + B)$$

Shape Fitting Algorithm

- 1. Construct a discrete template from sample pulses
- 2. Interpolate template to form a continuous Template, T(t)
- 3. "Stretch" and "shift" template to match signal:

$$X[i] = a(t_0)T(t[i] - t_0) + b(t_0)$$

[Note: a and b can be calculated explicitly given t_0]

4. Compute χ^2 (assuming equal uncertainty on each channel i)

$$\chi^2 \propto \sum \{X[i] - a(t_0)T(t[i] - t_0) + b(t_0)\}^2$$

5. Use Euler's method to minimize χ^2

Lossless Compression Algorithm

Rice-Golomb Encoding

Let x be number to encode

$$y = "s" + "q" + "r"$$

- q = x/M (unary)
- r = x%M (binary)
- s = sign(x)
- Any distribution
- Close to optimal for valid choice of M
- One extra bit to encode negative sign
- Self-delimiting
- If quotient too large, we "give up" and write x in binary with a "give up" signal in front

Rice-Golomb Encoding (M=2)

Value	Encoding					
-1	011					
0	000					
1	001					
2	1000					

Red = sign bit

Blue = quotient bit(s) (Unary)

Yellow = remainder bit (binary)

How to choose Rice-Golomb parameter M

 Generated fake Gaussian data (centered at zero) with variance σ²

For random variable X,
 M ≈ median(|X|)/2 is a good choice
 This is the close to the diagonal on the plot

 σ ≈ 32 for residuals of shape on wavedream data → M = 16 is a good choice

Compression Ratio from Rice-Golomb Encoding

Lossless compression factor of ~2

 In agreement with plot from simulated data on last slide

 Best compression ratio we achieved

Real Time Compression Algorithm

We choose to let the FE's GPU and CPU handle compression for flexibility

GPU Benchmarking (Timings)

- Block Size:
 - A GPU parameter, number of threads per multiprocessor

Can compress 2²⁶ integers
 (32-bit) in roughly ⅓ of a second.
 → ~ 0.8 GB/s compression rate

Fit + Compression Time using A5000 in PCle4 (Batch Size = 1024)

GPU Benchmarking (Timings)

- Batch Size:
 - How many integers are compressed by a single GPU thread

 Data must be sent to GPU in batches (not a continuous flow) to take full advantage of parallel computation

Handling the data rate

Again, data rate ~3.5GB/s

- We expect to achieve this using the following method(s)
 - Multiple GPUs/CPUs
 - Newer PCIe versions available by start of experiment

triggers	prescale	$\frac{\mathrm{range}}{\mathrm{TR(ns)}}$	rate (kHz)	CALO			ATAR digitizer			ATAR high thres	
				$\Delta T(ns)$	chan	MB/s	$\Delta T(ns)$	chan	MB/s	chan	MB/s
PI	1000	-300,700	0.3	200	1000	120	30	66	2.4	20	0.012
CaloH	1	-300,700	0.1	200	1000	40	30	66	0.8	20	0.004
TRACK	50	-300,700	3.4	200	1000	1360	30	66	27	20	0.014
PROMPT	1	2,32	5	200	1000	2000	30	66	40	20	0.2

Future Projects (Things I'm Working On)

FPGA Use

- For the PIONEER DAQ, we plan to use FPGAs to digitize data
- A PCIe card with an FPGA will replace the waveDREAM in our test stand picture
- Why?
 - Can use PCle for fast data transfer
 - Able to transfer data directly to GPU
 - More flexible signal triggers

November PSI beam time

Need a functioning one crate DAQ by November in order to test equipment

Equipment tests (Calo, ATAR, etc.)

Will have to "build" DAQ onsite

Auxiliary Slides

Common Pion Decay Channels

Photon Decay
$$\bullet$$
 $\pi^0 \rightarrow \gamma + \gamma$

Dalitz Decay •
$$\Pi^0 \rightarrow \gamma + e^- + e^+$$

Double-Dalitz Decay $\pi^0 \rightarrow e^- + e^+ + e^- + e^+$

Electrons •
$$\pi^0 \rightarrow e^- + e^+$$

[Note: Dalitz Decays are like photon decays, except the photon(s) are virtual and immediately decay into electron/positron pairs]

Naive Pion Decay, 2-body decay

- Without getting into details of QCD, we can treat this as a 3 particle decay
- We can use Fermi's golden rule:

$$d\Gamma = |\mathcal{M}|^2 \cdot \frac{1}{2\hbar m_a} \cdot \left[\frac{cd^3 \mathbf{p}_b^2}{(2\pi)^3 2E_b} \cdot \frac{cd^3 \mathbf{p}_c^2}{(2\pi)^3 2E_c} \right] \cdot (2\pi)^4 \delta^4(p_a - p_b - p_c)$$

After integration in the COM frame we find:

$$\Gamma = \frac{|\mathbf{p}|}{8\pi\hbar m_a^2 c} |\mathcal{M}|^2$$
where $\mathbf{p} = \mathbf{p}_b = -\mathbf{p}_c$

- $\rightarrow \Gamma \propto p$ (not correct)
 - Details hidden in matrix element

Why Massless → Chirality States ~ Helicity States

Massless → moves at c

Moves at c → cannot reverse particle direction with Lorentz boost → helicity is Lorentz Invariant

 Chirality is a property of a particle, always Lorentz invariant! → helicity and chirality agree in direction in all inertial reference frames

$$(\gamma^{\mu}p_{\mu} - m)u(p) = 0 \quad \text{[Dirac Equation]}$$

$$\Rightarrow \begin{pmatrix} -mI_{2\times 2} & \sigma \cdot p \\ \bar{\sigma} \cdot p & -mI_{2\times 2} \end{pmatrix} \begin{pmatrix} u_L \\ u_R \end{pmatrix} = 0$$

$$\Rightarrow \begin{cases} (\sigma \cdot p)u_R - mu_L = 0 \\ (\bar{\sigma} \cdot p)u_L - mu_R = 0 \end{cases}$$

$$m \to 0 \Rightarrow \begin{cases} (p_0 - \boldsymbol{\sigma} \cdot \mathbf{p})u_R = 0 \\ (p_0 + \boldsymbol{\sigma} \cdot \mathbf{p})u_L = 0 \end{cases}$$

$$\Rightarrow \begin{cases} \frac{\boldsymbol{\sigma} \cdot \mathbf{p}}{|\mathbf{p}|} u_R = u_R \\ \frac{\boldsymbol{\sigma} \cdot \mathbf{p}}{|\mathbf{p}|} u_L = -u_L \end{cases}$$

$$\hat{h} = \frac{\mathbf{S} \cdot \mathbf{p}}{|\mathbf{p}|} = \frac{1}{2} \frac{\boldsymbol{\sigma} \cdot \mathbf{p}}{|\mathbf{p}|} \quad \text{[Helicity operator]}$$

$$\Rightarrow \begin{cases} \hat{h}u_R = \frac{1}{2}u_R \\ \hat{h}u_L = -\frac{1}{2}u_L \end{cases} \quad \text{[Chiral states are eigenstates of helicity operator]}$$

LH (negative) helicity spinor to chiral components

An negative helicity antiparticle can be written as

$$v_{\downarrow} = \sqrt{E + m} \begin{pmatrix} \frac{|\mathbf{p}|}{E + m} \cos(\frac{\theta}{2}) \\ \frac{|\mathbf{p}|}{E + m} \sin(\frac{\theta}{2}) e^{i\phi} \\ \cos(\frac{\theta}{2}) \\ \sin(\frac{\theta}{2}) e^{i\phi} \end{pmatrix}$$

Where (θ, ϕ) define the direction of the momentum. Without loss of generality, assume the momentum is in the z direction

$$v_{\downarrow} = \sqrt{E+m} \begin{pmatrix} \frac{|\mathbf{p}|}{E+m} \\ \frac{|\mathbf{p}|}{E+m} \\ 1 \end{pmatrix} \equiv A \begin{pmatrix} \tau \xi_R \\ \xi_R \end{pmatrix}$$

LH (negative) helicity spinor to chiral components

We can use the chiral projection operations to project this helicity state to chiral state

$$v_{\downarrow} = P_L v_{\downarrow} + P_R v_{\downarrow}$$

$$P_R = \frac{I_{4 \times 4} + \gamma^5}{2} = \begin{pmatrix} I_{2 \times 2} & I_{2 \times 2} \\ I_{2 \times 2} & I_{2 \times 2} \end{pmatrix}$$

$$P_L = \frac{I_{4 \times 4} - \gamma^5}{2} = \begin{pmatrix} I_{2 \times 2} & -I_{2 \times 2} \\ -I_{2 \times 2} & I_{2 \times 2} \end{pmatrix}$$

$$v_{\downarrow} = \frac{A}{2} \left[(1 - \tau) \begin{pmatrix} -\xi_R \\ \xi_R \end{pmatrix} + (1 + \tau) \begin{pmatrix} \xi_R \\ \xi_R \end{pmatrix} \right] \equiv \frac{A}{2} (1 - \tau) v_R - \frac{A}{2} (1 + \tau) v_L$$

Where the left and right chiral anti-particle states are defined by

$$P_L v_R = v_R$$
 and $P_R v_L = v_L$

LH (negative) helicity spinor to chiral components

Looking at the chiral projection of a negative helicity state, we can see in general there are left **and** right chiral components, so the weak force **can** act on a LH (negative) anti-particle helicity state

$$v_{\downarrow} = \frac{A}{2} \left[\left(1 - \frac{p}{E+m} \right) v_R - \left(1 + \frac{p}{E+m} \right) v_L \right]$$

It should also be clear as m→0, the LH (negative) helicity state coincides with the LH chiral state.

This means W boson decay to two massless leptons is forbidden! One of the particles must have the wrong chirality, and thus low mass decays will be suppressed.

Matrix Element Details

$$\mathcal{M}_{fi} = \left[\frac{g_W}{\sqrt{2}} \frac{1}{2} f_{\pi} p_{\pi}^{\alpha} \right] \cdot \left[\frac{g_{\alpha\beta}}{m_W^2} \right] \cdot \left[\frac{g_W}{\sqrt{2}} g_l \bar{u}(p_l) \gamma^{\beta} \frac{1}{2} (1 - \gamma^5) v(p_{\nu}) \right]$$

Move to pion rest frame so only $p^0 = m_{\pi}$ remains:

$$\mathcal{M}_{fi} = \frac{g_W^2 f_{\pi} g_l}{4m_W^2} m_{\pi} \bar{u}(p_l) \gamma^0 \frac{1}{2} (1 - \gamma^5) v(p_{\nu})$$

Using the identity: $\bar{u}(p_l)\gamma^0=u^\dagger(p_l)\gamma^0\gamma^0=u^\dagger(p_l)I_{4\times 4}=u^\dagger(p_l)$

$$\mathcal{M}_{fi} = \frac{g_W^2 f_{\pi} g_l}{4m_W^2} m_{\pi} u^{\dagger}(p_l) \frac{1}{2} (1 - \gamma^5) v(p_{\nu})$$

Matrix Element Details

For a neutrino m << E so helicity eigenstate is essentially the chiral eigenstate:

$$\frac{1}{2}(1-\gamma^5)v(p_{\nu}) = v_{\uparrow}(p_{\nu}) \implies \mathcal{M}_{fi} = \frac{g_W^2 f_{\pi} g_l}{4m_W^2} m_{\pi} u^{\dagger}(p_l)v_{\uparrow}(p_{\nu})$$

By letting the lepton go in the z-direction we can write:

$$u(p_l) = u_{\uparrow}(p_l) + u_{\downarrow}(p_l) = \sqrt{E_l + m_l} \begin{bmatrix} \begin{pmatrix} 1 \\ 0 \\ \frac{p}{E_l + m_l} \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \\ 0 \\ \frac{-p}{E_l + m_l} \end{pmatrix} \end{bmatrix} \text{ and } v(p_{\mu}) = v_{\uparrow}(p_{\mu}) = \sqrt{p} \begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \end{pmatrix}$$

Negative helicity lepton down state disappears when "dotted" with the neutrino state:

$$\mathcal{M}_{fi} = \frac{g_W^2 f_\pi g_l}{4m_W^2} m_\pi \sqrt{E_l + m_l} \sqrt{p} \left(1 - \frac{p}{E_l + m_l} \right)$$

Matrix Element Details

$$\mathcal{M}_{fi} = \frac{g_W^2 f_\pi g_l}{4m_W^2} m_\pi \sqrt{E_l + m_l} \sqrt{p} \left(1 - \frac{p}{E_l + m_l} \right)$$

We can re-write E₁ and p in the limit where the neutrino mass is zero:

$$E_{l} = \frac{m_{\pi}^{2} + m_{l}^{2}}{2m_{\pi}} \text{ and } p_{l} = \frac{m_{\pi}^{2} - m_{l}^{2}}{2m_{\pi}}$$

$$\implies \mathcal{M}_{fi} = \frac{g_{W}^{2} f_{\pi} g_{l}}{4m_{W}^{2}} m_{\pi} \cdot \frac{m_{\pi} + m_{l}}{\sqrt{2m_{\pi}}} \cdot \left(\frac{m_{\pi}^{2} - m_{l}^{2}}{2m_{\pi}}\right)^{\frac{1}{2}} \cdot \frac{2m_{l}}{m_{\pi} + m_{l}}$$

$$\implies \mathcal{M}_{fi} = \frac{g_{W}^{2} f_{\pi} g_{l}}{4m_{W}^{2}} \cdot m_{l} (m_{\pi}^{2} - m_{l}^{2})^{\frac{1}{2}}$$

Another Test for Lepton Universality

Fermi constant, $G_E = g^2 / 4\sqrt{2} M_W^2$

 $G_{\mu e} = 1.166 \ 378 \ 7(6) \times 10^{-5} \ GeV^{-2} \ (0.5 \ ppm)$

 $G_{TI} = 1.1665(28) \times 10^{-5} \text{ GeV}^{-2} (0.2\%)$

 $G_{Te} = 1.1665(28) \times 10^{-5} \text{ GeV}^{-2} (0.2\%)$

weak coupling, g

 $g_e : g_u : g_\tau = 1 : 1.0011(24) : 1.0006(24)$

CKM Unitary Test

arXiv:2203.05505

- Pion beta decay gives a precision measurement of V_{ud}
- These decays are lower rate than $\pi \to e v_{_{e}}$ and $\pi \to \mu v_{_{\mu}}$
- Experimental measurements do not agree

Some Information about LXe and Nal

- LXe has singlet and triplet state decay constants:
 - σ $T_{S} = 4.3 \pm 0.6 \text{ ns}$ σ $T_{T} = 26.9^{+0.7} \text{ns}$
- LXe light yield:
 - ~29 photons/keV at room temp

- Nal decay constant:
 - o ~ 250 ns
- Nal light yield:
 - 38 photons/keV at room temp

Scintillation from excited Xe (Xe*):

$$Xe^* + Xe + Xe \rightarrow Xe_2^* + Xe$$
,
 $Xe_2^* \rightarrow 2Xe + h\nu$.

Scintillation from ionized Xe (Xe⁺):

$$Xe^+ + Xe \rightarrow Xe_2^+$$
,
 $Xe_2^+ + e^- \rightarrow Xe^{**} + Xe$,
 $Xe^{**} \rightarrow Xe^* + heat$,
 $Xe^* + Xe + Xe \rightarrow Xe_2^* + Xe$,
 $Xe_2^* \rightarrow 2Xe + hv$.

PEN

- Similar to PIENU
 - Segmented
 - Better timing

- Many channels of pure CSI
 - o 240 channels

Active target

More ATAR details

- Pion and muon decays deposit energy into ATAR
- Allow event types to be distinguished
- Muons decaying in flight can boost positron energy past 53 MeV (big issue!)
 - ATAR can give information to rebuild event, and correctly classify a muon decay

Why two computers?

Really just for practice

 Real experiment will likely have multiple FE computers, which will all communicate with one BE computer

 In real experiment, one computer is impractical

Networking Machines Together

LAN connection

- a. dhcp
- b. ssh

Remote device

2. Remote connection

- a. Kerberos
- b. ssh

Edits to MIDAS code

- Some edits were made to the MIDAS source code to make our frontends "work"
 - Increasing online database (ODB) maximum number of hotlink
 - Various "bug fixes" (i.e. things that made it so the g-2 daq would no longer compile)

Other Conditioning Distributions

Twice Delta Encoding

Double Exponential Fit

Shape Fitting Details

Fit Function

$$X[i] = aT(t[i] - t_0) + b$$

Explicit a(t₀) calc

$$a(t_0) = \frac{\sum_{i=1}^{N} X[i] \sum_{i=1}^{N} T(t[i] - t_0)^2 - \sum_{i=1}^{N} T(t[i] - t_0) \sum_{i=1}^{N} T(t[i] - t_0) X[i]}{N \sum_{i=1}^{N} T(t[i] - t_0)^2 - (\sum_{i=1}^{N} T(t[i] - t_0))^2}$$

Explicit b(t₀) calc

$$b(t_0) = \frac{N \sum_{i=1}^{N} T(t[i] - t_0) X[i] - \sum_{i=1}^{N} T(t[i] - t_0) \sum_{i=1}^{N} X[i]}{N \sum_{i=1}^{N} T(t[i] - t_0)^2 - (\sum_{i=1}^{N} T(t[i] - t_0))^2}$$

Explicit χ^2 calc

$$f(t_0) \equiv \chi^2 \propto \sum_{i} \{X[i] - a(t_0)T(t[i] - t_0) + b(t_0)\}^2$$

Newton's method

$$(t_0)_{n+1} = (t_0)_n - \frac{f'((t_0)_n)}{f''((t_0)_n)}$$

Threshold requirement $|(t_0)_{n+1} - (t_0)_n| < \epsilon \equiv \text{"Threshold"}$

Golomb Encoding

In general, M is an arbitrary choice

- Since computers work with binary,
 M = 2^x such that x is an integer is a "fast" choice
 - This is called Rice-Golomb Encoding

 Self delimiting so long as the information M is provided

Golomb Encoding Example

Choose M = 10, b = $log_2(M) = 3$ 2^{b+1} - M = 16 - 10 = 6

 $r < 6 \rightarrow r$ encoded in b=3 bits

 $r \ge 6 \rightarrow r$ encoded in b+1=4 bits

Encoding of quotient part			
\boldsymbol{q}	output bits		
0	0		
1	10		
2	110		
3	1110		
4	11110		
5	111110		
6	1111110		
:	:		
N	1111110		

Encoding of remainder part						
r	offset	binary	output bits			
0	0	0000	000			
1	1	0001	001			
2	2	0010	010			
3	3	0011	011			
4	4	0100	100			
5	5	0101	101			
6	12	1100	1100			
7	13	1101	1101			
8	14	1110	1110			
9	15	1111	1111			

Huffman Encoding

- Requires finite distribution
- Values treated as "symbols"
- Self-delimiting (sometimes called "greedy")

Huffman Encoding Example

Value	Frequency	Encoding
-1 ≡ a	1	000
0 ≡ b	10	1
1 ≡ c	5	01
2 ≡ d	3	001

Theoretical Uncertainty in Compression Ratio from Gaussian Noise

• ~ 0.1% relative error

Uniform Distribution of Noise effect on Compression Ratio

 Here instead we use a uniform distribution to generate the noise

 Not much different than gaussian noise, same conclusions really

Residuals Distribution and Optimal M

М	Compression Ratio
1	1.04721105
2	1.21287474
4	1.53114598
8	1.92616642
16	2.09307249
32	2.02975311
64	1.86037914
128	1.66627451

Lossy Compression Idea

- In lossless compression, Rice-Golomb encodes:
 - 1. Fit parameters
 - 2. Residuals

• If the residuals meet some criteria, we may choose to threw them out just keeping our fit of the signal.

Example Criteria:
$$\sum_{i} r[i] < \epsilon \equiv \text{"Threshold"}$$

GPU Timing Breakdown

 Bottleneck is at the transfer between GPU and CPU

 This data transfer time decreases with PCle gen

 Interfacing and Initialization should be 1 time operations

```
C:\Users\custo\Desktop\Scripts\CUDA>fitting and compression.out
Interfacing with GPU: 0.111413700 seconds.
Initializing arrays (CPU): 0.129644300 seconds.
Initializing arrays (GPU): 0.102764100 seconds.
Computing Fit Parameters (CPU): 0.010539800 seconds.
Allocate an array on GPU mem: 0.000347700 seconds.
Copy an array CPU->GPU mem: 0.073158300 seconds.
Calculate Residuals (GPU): 0.000018800 seconds.
Encode Integers (GPU): 0.000008000 seconds.
Copy an array GPU->CPU mem: 0.069847700 seconds.
Sew together encodings (CPU): 0.024214400 seconds.
Free an array from mem (GPU): 0.001255800 seconds.
Free an array from mem (CPU): 0.001255800 seconds.
N = 67108864, blockSize = 1024
Full Execution Time: 0.590825600 seconds.
Compression Ratio = 2.500000
```

PCIe Gen Speedup

 PCle3 → PCle4 gives a roughly factor of 2 speedup (expected)

 What's puzzling is that PCle2 is faster than PCle3

 PCle2 test was done on different computer and OS, may be the cause

Does the GPU Quality Matter?

- PCle bus data transfer rate matters much more
- Tesla K20c (Released: November 12th, 2012)
- A5000 (Released: April 12th, 2021)
- Nearly a decade of improvement gives ~1.2x speedup. Not cost efficient to use newest GPUs.

Programing FPGAs

 To code our FPGAs, we will likely use Vivado and write our code in Verilog

 To the right is an example thermometer project I did to learn about programming FPGAs

Computation Time scales O(n)

- Same plot as before, without x axis in log scale
- For sufficient N, the computational time scales linearly
- N too large, GPU runs out of memory
- N too small, GPU parallel computation not fully utilized

Optimal Batching Choice

- There appears to be an optimal batching choice
- Small optimization, may not be worth worrying about
- Small batch sizes → CPU must do more "sewing" data back together.
- Large batch sizes → fewer GPU threads are utilized during compression

