
g-2 modified DAQ Manual

None

None

None

Table of contents

51. Welcome to the g-2 Modified DAQ Manual

51.1 PDF Version

51.2 Contact

82. Hardware Documentation

82.1 General Hardware Overview

92.2 IPMI

102.3 1GbE NIC (Gigabit Ethernet Network Interface Card)

112.4 10GbE NIC (10 Gigabit Ethernet Network Interface Card)

112.5 µTCA Crate (Micro Telecommunications Computing Architecture Crate)

122.6 MCH (MicroTCA Carrier Hub)

142.7 WFD5 (Waveform Digitizer)

162.8 FC7 (Flexible Controller)

192.9 AMC13 (Advanced Mezzanine Card)

222.10 Meinberg Card (TCR180PEX or similar)

243. Software Dependencies

243.1 PIONEER Experiment Repositories

243.2 Setting Up a GitHub SSH Token on RHEL7/9 Systems

253.3 Development Tools

263.4 ipmitool

263.5 ROOT

273.6 Midas

283.7 Boost

283.8 IPBus (Cactus)

293.9 System Monitor

303.10 Meinberg

324. Installing and Running g-2 modified DAQ

324.1 Overview

334.2 Installer

334.3 Manual Installation Guide

364.4 Running the Frontends

385. Midas Online Data Base (ODB) Configuration

385.1 ODB basics

415.2 g-2 Modified DAQ Specific ODB Configuration

526. Some Midas Information and Tips

526.1 Data Storage location

Table of contents

- 2/81 -

526.2 Multiple Experiments on One Midas Installation

526.3 Midas Files to ROOT Files (unpacker)

526.4 Recovering from a Corrupted ODB

536.5 Fixing a corrupted ODB by hand

546.6 Loading an ODB save

546.7 Changing the ODB size

566.8 Adding Program Startup Scripts

577. Additional Software

577.1 Eigen

577.2 Midas Event Unpacker

587.3 Publisher

597.4 Basic DQM

607.5 Crate Monitor

628. Networking Basics

628.1 Reading Network Port Information

638.2 Using nmcli Command Line Tools

648.3 Using Network Scripts

648.4 Subnet Masks and Network Ranges

668.5 Scanning a network

679. Debugging Common Errors

679.1 Initialization Errors

689.2 Alarms and Run Ending Errors

6910. Miscellaneous Information

6910.1 Additional Notes

6910.2 What is (was) g-2?

6910.3 Initialism Cheatsheet

7010.4 Differential Signals

7010.5 Limitations of Meinberg Card

7110.6 Port Forwarding an SSH Connection

7210.7 2023 PSI LYSO Testbeam DAQ Installer

7510.8 FC7 Labeling

7510.9 Using Screens in Linux

7610.10 Getting LD_LIBRARY_PATH Into a Screen Session

7610.11 The N.A.T. MCH

7710.12 Finisar SFP vs. Avago SFP+

7710.13 Bank Signals

7810.14 CentOS7 Related Installation Steps

7910.15 Old Network Scripts

Table of contents

- 3/81 -

8010.16 Python2

Table of contents

- 4/81 -

1. Welcome to the g-2 Modified DAQ Manual

The purpose of this manual is to aid users with setup, usage, and debugging of the g-2 modified data acquisition (DAQ) system.

This DAQ's purpose is to aid with various test stands across the PIONEER collaboration. Most topics are simplified to only

include information needed for operating this DAQ. Some external links are provided for additional, generalized information.

Many of the guides on this webpage are thorough, as they are aimed to give solutions to problems I've encountered. However,

every system is different; there may be some additional debugging to be done on the user's end.

1.1 PDF Version

A pdf version of this manual is automatically generated using MkDocs with pdf plugin.

1.2 Contact

Manual Written by Jack Carlton.

Ph.D. Candidate, Department of Physics and Astronomy, University of Kentucky.

 Email: j.carlton@uky.edu

 GitHub: jaca230

Feel free to reach out with any questions, to correct mistakes, point out missing information, or otherwise. If you're familiar with

mkdocs and have repository access, feel free to push your edits and credit yourself.

Last Updated: August 6, 2024

1. Welcome to the g-2 Modified DAQ Manual

- 5/81 -

https://pypi.org/project/mkdocs-with-pdf/
mailto:j.carlton@uky.edu
https://github.com/jaca230

August 6, 2024

1.2 Contact

- 6/81 -

1.2 Contact

- 7/81 -

2. Hardware Documentation

2.1 General Hardware Overview

2.1.1 Conceptual Diagram (One Crate System)

2. Hardware Documentation

- 8/81 -

Differential signal into WFD5 (Waveform Digitizer): Differential signaling are input into Cornell's WFD5s. Data is

aggregated by AMC13 on triggers.

Trigger signal into FC7 (Flexible Controller): Provides flexible triggering, FC7 sends trigger signals over optical links to

the AMC13.

AMC13 (Advanced Mezzanine Card): Aggregates data from digitizers on a trigger and packages for sending over 10GbE (10

Gigabit Ethernet). Transfers this to the desktop for further processing.

MCH (MicroTCA Carrier Hub): Facilitates communication between the desktop and the crate system via 1GbE Ethernet,

managing system-level (crate) operations in a way.

Desktop CPU: Processes events received from the AMC13. Data is unpacked and formed into midas events for storage.

Meinberg: Provides precise trigger timestamps using GPS timing. This is an artifact of g-2 more than anything, were multiple

disconnected systems needed to be correlated.

2.1.2 Labled Picture (One Crate System)

2.2 IPMI

2.2.1 Overview

Intelligent Platform Management Interface (IPMI) is a standardized interface used for managing and monitoring computer

systems. It allows for the remote management of systems independently of the operating system state or the system's power

state. IPMI provides a way to manage a server using a set of standardized commands and messages that can be sent over a

network or via a direct serial connection.

2.2.2 Features of IPMI

Remote Management: Allows administrators to remotely manage systems, including power on/off, rebooting, and accessing

system logs.

Hardware Monitoring: Monitors hardware components like temperature, voltage, fans, and power supply status.

Serial Over LAN (SOL): Provides serial console access over a network, allowing remote troubleshooting and management.

Event Logging: Logs critical system events such as hardware failures or temperature thresholds being exceeded.

•

•

•

•

•

•

•

•

•

•

2.1.2 Labled Picture (One Crate System)

- 9/81 -

Security: Supports user authentication, encrypted communication, and access control.

2.2.3 Common IPMI Tools

ipmitool: A command-line utility for managing IPMI-enabled devices. It supports a wide range of commands for sensor

reading, system status checking, power control, and firmware updates. ipmitool commands are the building blocks used in

many of the configuration scripts for the hardware. See ipmitool for more information.

2.2.4 Example Commands Using ipmitool

1 Print Field Replaceable Unit (FRU) Information:

This command retrieves and prints the Field Replaceable Unit (FRU) information from the IPMI device located at IP address

192.168.1.15 .

-H 192.168.1.15 : Specifies the IP address of the IPMI device. Replace 192.168.1.15 with the actual IP address of your IPMI

device.

fru print : Command to retrieve and display the FRU information. FRU information includes details about hardware

components that can be replaced in the system, such as part numbers and descriptions.

2 Send Raw Command to IPMI Device:

This command sends a raw IPMI command to a device over LAN with specified parameters.

-I lan : Specifies the interface type (lan in this case), which indicates that the IPMI command will be sent over the LAN

interface.

-H 192.168.1.15 : Specifies the IP address of the IPMI device.

-m 0x20 : Specifies the channel number to communicate with the BMC (Baseboard Management Controller). The default is

usually 0x20 , but for some reason we need to specify this on some systems.

-B 0 : Specifies the BMC instance number.

-T 0x82 : Specifies the target address in the IPMI device. This is the MCH.

-b 7 : Specifies the bus number.

-t 0x86 : Specifies the target channel number. This is the device you're targeting, in this case it's FC7 in slot 11 of the

microTCA crate.

raw 0x06 0x1 : Command to send a raw IPMI command (0x06 0x1 in this case) to the specified IPMI device. The raw command

0x06 0x1 varies based on the specific IPMI command you intend to send.

You can read a bit more about these commands in the manuals linked in the MCH section. You can read more about ipmitool's

command arguments on this webpage.

2.3 1GbE NIC (Gigabit Ethernet Network Interface Card)

2.3.1 Overview

These NICs are generally PCIe Cards that are "plug and play". They provide a 1 gigabit per second ethernet connection for the

host computer.

•

•

ipmitool -H 192.168.1.15 fru print

•

•

ipmitool -I lan -H 192.168.1.15 -m 0x20 -B 0 -T 0x82 -b 7 -t 0x86 raw 0x06 0x1

•

•

•

•

•

•

•

•

2.2.3 Common IPMI Tools

- 10/81 -

https://linux.die.net/man/1/ipmitool

2.3.2 Configuration

If you machine has a GUI, you may find it easier to edit network settings that way. Otherwise, you can edit settings from

command line. For example for UKY's teststand we use:

You may need to create a connection configuration file first if it doesn't exist. For example for UKY's teststand we use:

In particular, the ipv4.addresses is important. Here the port is specified to accept any traffic on the 192.168.xxx.xxx subnet. See

the networking page for more details.

2.4 10GbE NIC (10 Gigabit Ethernet Network Interface Card)

2.4.1 Overview

These NICs are generally PCIe Cards that are "plug and play". They provide a 10 gigabit per second ethernet connection for the

host computer. In our case, we use optical cables that plug into SFPs. The MTU (Maximum Transmission Unit) of the card

should be 9000 or greater.

2.4.2 Configuration

If you machine has a GUI, you may find it easier to edit network settings that way. Otherwise, you can edit settings from

command line. For example, for UKY's teststand we use these settings:

You may need to create a connection configuration file first if it doesn't exist. For example for UKY's teststand we use:

In particular, the ipv4.addresses and 802-3-ethernet.mtu sections are important. Here the port is specified to accept any traffic

on the 192.168.51.xxx subnet. See the networking page for more details.

2.5 µTCA Crate (Micro Telecommunications Computing Architecture Crate)

2.5.1 Overview

Micro Telecommunications Computing Architecture (µTCA or MicroTCA) is a modular, high-performance architecture designed

for telecommunications and other industries requiring reliable, scalable, and high-bandwidth systems. CERN employs µTCA

systems for the acquisition and processing of vast amounts of data generated by particle detectors. These systems are capable of

handling high-speed data streams and ensuring data integrity and accuracy.

For our purposes, you can just view it as an electronics crate to host the MCH, FC7, and WFD5.

nmcli connection modify enp5s0 \
 ipv4.addresses 192.168.1.100/16 \
 ipv4.method manual \
 connection.autoconnect yes \
 ipv6.method ignore

nmcli connection add type ethernet con-name enp5s0 ifname enp5s0

nmcli connection modify enp1s0f0 \
 ipv4.addresses 192.168.51.100/24 \
 ipv4.method manual \
 connection.autoconnect yes \
 connection.autoconnect-priority -999 \
 802-3-ethernet.mtu 9000 \
 ipv6.method ignore

nmcli connection add type ethernet con-name enp1s0f0 ifname enp1s0f0

2.3.2 Configuration

- 11/81 -

2.5.2 Configuration

The µTCA Crate should be "plug and play" in our case; no configuration is needed.

2.6 MCH (MicroTCA Carrier Hub)

2.6.1 Overview

For our purposes, the MCH acts as a point of communication between the crate and the computer hosting the frontends. Here,

we will cover specifically setting up VadaTech MCHs, however the system can also be run using N.A.T. MCH.

2.6.2 Wired Connections

1GbE Ethernet Connection

The MCH should have an ethernet port labeled GbE0 or 1GbE (or something along those lines). Use an ethernet cable to connect

this to your system's 1GbE NIC.

See the labeled DAQ Picture 1GbE MCH in/out.

2.6.3 Configuration

First you should configure the 1GbE NIC if you haven't already.

Here are some pdfs that may be be helpful:

MCH Manual PDF

MCH Network Configuration PDF

Changing MCH Network Settings

Below is a stripped down version of MCH Network Configuration PDF; you can read the pdf for more details.

1 Connect to the MCH's Linux environment

Plug an Ethernet cable into the GbE0 port and the frontend host computer. From a terminal, run

The password should be root .

Note: If you don't know what IP the MCH has, you can try pinging a crate numbers up to 32

If you still can't find the crate, you should verify your frontend host computer's ethernet port is properly configured. See the

networking page for some general networking information. If that still fails, you may need to do a network scan to look for the

MCH.

Note: The error Bad server host key: Invalid key length may be due to OpenSSH versions >7.8 (August 2018) requiring rsa keys

to be at least 2048 bits. The MCH may be configured to have a key shorter than this. Dropbear (a lightweight ssh client) has no

such requirement and should already be installed on the MCH. To connect via dropbear instead:

From here, you can regenerate MCH's RSA key if you'd like, but it is not required.

•

•

ssh root@192.168.[crate].15

ping 192.168.[crate].15

yum install dropbear
dbclient root@192.168.2.15

2.5.2 Configuration

- 12/81 -

2 Remount root directory with read/write permission

3 Edit Network Settings

Note: In order to insert text properly, I had to type this command into vi first :set nocompatible

Change the following to reflect your network settings

For example

Note: For a one crate system, you can change NETMASK1 to 255.255.255.0 if your really want. This just means the MCH can only

see IPs that start with 192.168.[crate] .

Then run

4 Edit .xml settings

Edit the .xml config

In vi you can use the command :/192 to skip to the relevant section.

Change the <ip_address> , <gw_address> , and <net_mask> to correspond with what you changed above. For example:

Then run

mount -o remount,rw /

vi /etc/rc.d/rc.conf

net interface 1
export SYSCFG_IFACE1=y
export INTERFACE1="eth1"
export IPADDR1="192.168.[crate].15"
export NETMASK1="255.255.224.0"
export BROADCAST1="192.168.31.255"
export GATEWAY1={IP of server (i.e. the IP of the ethernet port on the frontend host computer)}
export NAMESERVER1="0.0.0.0"

net interface 1
export SYSCFG_IFACE1=y
export INTERFACE1="eth1"
export IPADDR1="192.168.2.15"
export NETMASK1="255.255.224.0"
export BROADCAST1="192.168.31.255"
export GATEWAY1="192.168.1.100"
export NAMESERVER1="0.0.0.0"

carrier set_ip_connection -s 192.168.[crate].17 -c 192.168.[crate].18
carrier set_ip_connection -m 192.168.[crate].19 -M 192.168.[crate].20

vi /opt/vadatech/IPMI/UTCShelf/etc/fruUTCSH.xml

<IP_Connection>
 <in_band>eth0,eth1</in_band>
 <failover>eth1,eth0</failover>
 <IP>
 <ip_address>192.168.[crate].17</ip_address>
 <gw_address>192.168.1.1</gw_address>
 <net_mask>255.255.255.0</net_mask>
 </IP>
</IP_Connection>

<IP_Connection>
 <in_band>eth0,eth1</in_band>
 <failover>eth1,eth0</failover>
 <IP>
 <ip_address>192.168.2.17</ip_address>
 <gw_address>192.168.1.100</gw_address>
 <net_mask>255.255.224.0</net_mask>
 </IP>
</IP_Connection>

vtipmi stop
createFruRepositories

2.6.3 Configuration

- 13/81 -

5 Power cycle the uTCA crate

The MicroTCA crate must then be power-cycled, and you must wait until all of the blue hot-swap lights have turned off.

6 Set Shelf Address

Repeat steps 1 and 2. Then run the command

7 Verify Settings Changes

Verify the output of all the following commands looks right.

Finally, exit the ssh connection with

and verify you can ping the MCH on the new assigned address

2.7 WFD5 (Waveform Digitizer)

2.7.1 Overview

The WFD5 is a AMC developed by Cornell for g-2 data digitization. Our use case it the same: to digitize the data before being

processed further by the frontend host computer.

2.7.2 Wired Connections

Pentabus Cable Input Signal

The WFD5 has a 5 channel differential signal input. Connect the differential signal to be digitized using a pentabus cable.

See the labeled DAQ Picture WFD5 5-channel differential signal in.

2.7.3 Configuration

First you should configure the MCH if you haven't already.

For most of the configuration below to work, you must have cactus installed and linked with python. There are WFD5 python

configuration scripts located on the PIONEER github. Some of these scripts are written in python 2, it's easiest to manually

update the syntax to be compatible with python 3. After setting up your github account, You can clone the repository with:

Below are a few examples of using the configuration scripts.

set_shelf_address_info -a 192.168.[crate].17

carrier get_ip_connection

get_ip_connection

get_shelf_address_info

list_carriers_present

ifconfig

exit

ping 192.168.[crate].15

git clone git@github.com:PIONEER-Experiment/wfdConfig.git

2.7 WFD5 (Waveform Digitizer)

- 14/81 -

https://github.com/PIONEER-Experiment/wfdConfig
https://github.com/PIONEER-Experiment/wfdConfig

Reading IP Address

This will print usage help.

Changing IP Address

This will print usage help.

You should set the IP to be in the format 192.168.[crate number].[slot number] for the DAQ to work properly.

You will need to power cycle (pull the black handle out and push it back in) the WFD5 to get it to take the new address.

Then verify you can ping the address

Reading Status

This will print usage help.

Updating Firmware

There are some instructions in the read me, you can see them on the wfdConfig github page.

You need to set the IP before doing this.

It will be easier if you install the DAQ software before doing this. In particular, you want the environment variable BOOST_ROOT

declared in your shell session. Additionally, you'll want the address table located in the g-2 modified DAQ repository.

You may be able to simply make the FC7 firmware updating tool with

If so, skip to step 4 below.

1 Setup environment (if not already)

where you replace /path/to with the appropriate paths.

2 Edit makefile

Using your favorite text editor, open the makefile

Add the line

cd wfdConfig/software
python read_addresses.py

cd wfdConfig/software
python store_ip.py

ping 192.168.[crate].[slot]

cd wfdConfig/software
python read_status.py

cd wfdConfig/software/flash
make

cd /path/to/gm2daq-modified/environment_setup/
source ./setup_environment.sh
cd /path/to/wfdConfig/software/flash

export LD_LIBRARY_PATH=$(pwd)/lib:$LD_LIBRARY_PATH
export CPLUS_INCLUDE_PATH="$BOOST_ROOT/include:$CPLUS_INCLUDE_PATH"

vi Makefile

-L$(BOOST_ROOT)/lib

2.7.3 Configuration

- 15/81 -

https://github.com/PIONEER-Experiment/wfdConfig/tree/master/software/flash

to the makefile, the relevant section should look like this

3 Make programFirmware executable

verify programFirmware has been made.

4 Program the WFD5 See

for usage. For example:

where you replace /path/to with the appropriate paths. This will apply firmware version 3.1.1 to the WFD5 in crate 1 slot 1.

Supposedly you can use this command to program multiple WFD5s at once, though I've never tried.

2.8 FC7 (Flexible Controller)

2.8.1 Overview

For our use case, the FC7 can be viewed as a hub that sends out Timing, Trigger, and Control (TTC) Signals to the AMC13s. It is

a much more general tool developed by CERN, you can read more about it at a surface level in this presentation. Additionally,

there are some detailed schematics.

The FC7 has two slots for FMC modules. Usually, the top slot is for an SFP interface. The bottom slot is for the FMC that handles

trigger and clock input.

2.8.2 FMCs

SFP Interface

The SFP interface is more or less "plug and play". You should familiarize yourself with the FC7 labeling. This needs to be placed

in the top slot. Also this slot this is in needs to be specified in the ODB.

Trigger and Clock Input Interface

The trigger and clock input interface uses a digital I/O board. The FC7 firmware is configured to use channels 4-7 for input, and

0-3 for output; on the board there are microswitches you must toggle on the digital I/O board. For incoming signals that will

expect 50 Ohm termination, you should apply a jumper shown in page 4 of the digital I/O board quick reference.

In some setups, there is also a 2nd mezzanine card that then mounts on that FMC card to route the I/O through coax ribbon

cables. This connects to the bank board.

LIBRARY_PATH = -Llib \
 -L/opt/cactus/lib \
 -L$(CACTUS_ROOT)/lib \
 -L$(CACTUS_ROOT)/uhal/uhal/lib \
 -L$(CACTUS_ROOT)/uhal/grammars/lib \
 -L$(CACTUS_ROOT)/uhal/log/lib \
 -L$(CACTUS_ROOT)/extern/pugixml/RPMBUILD/SOURCES/lib \
 -L$(CACTUS_ROOT)/extern/boost/RPMBUILD/SOURCES/lib \
 -L$(BOOST_ROOT)/lib

make
cd bin

./programFirmware

./programFirmware 1 1 /path/to/wfdConfig/releases/wfd_master_0x030101.mcs /path/to/wfdConfig/releases/wfd_channel_0x030101.mcs /path/to/wfdConfig/releases/
wfd_channel_async_0x030101.mcs /path/to/wfdConfig/releases/wfd_channel_cbuf_0x030101.mcs

2.8 FC7 (Flexible Controller)

- 16/81 -

https://indico.cern.ch/event/299180/contributions/1659595/attachments/563055/775699/FC7.pdf

2.8.3 Wired Connections

Optical Link to AMC13

The FC7 sends trigger information to the AMC13s over an optical cable. This allows one FC7 to send triggers to up to 8 crates.

Fill in the FC7 SFP ports with Finisar (or similar) SFP transceiver(s), one for each AMC13. Connect it to the appropriate SFP port

in the AMC13.

See the labeled DAQ Picture trigger out FC7.

Samtech Ribbon cable to Bank Board

A ribbon cable is used to carry TTC signals from the FC7 to a signal bank board. The ribbon cable used is a Samtec

HHSC-108-40.00-SU-SU (the 40.00 specifies the length, which need not be 40 cm). This cable runs between the trigger and clock

input interface FMC and the bank board; this diagram bank board may be helpful.

See the labeled DAQ Picture FC7 trigger in.

2.8.4 Configuration

First you should configure the MCH if you haven't already.

For most of the configuration below to work, you must have cactus installed and linked with python. There are FC7 python

configuration scripts located on the PIONEER github. Some of these scripts are written in python 2, it's easiest to manually

update the syntax to be compatible with python 3. After setting up your github account, You can clone the repository with:

Below are a few examples of using the configuration scripts.

Reading IP Address

This will print usage help.

Changing IP Address

This will print usage help.

You should set the IP to be in the format 192.168.[crate number].[slot number] for the DAQ to work properly.

You may need to power cycle (pull the black handle out and push it back in) after this, I don't remember.

Then verify you can ping the address

Reading Status

Note: You should use the expert option for this, otherwise

git clone git@github.com:PIONEER-Experiment/unifiedCCC.git

cd unifiedCCC/software
python read_addresses.py

cd unifiedCCC/software
python store_ip.py

ping 192.168.[crate].[slot]

cd unifiedCCC/software
python read_status.py [crate] [slot] [options]

2.8.3 Wired Connections

- 17/81 -

https://github.com/PIONEER-Experiment/unifiedCCC
https://github.com/PIONEER-Experiment/unifiedCCC

Updating Firmware

You need to set the IP before doing this.

It will be easier if you install the DAQ software before doing this. In particular, you want the environment variable BOOST_ROOT

declared in your shell session. Additionally, you'll want the address table located in the g-2 modified DAQ repository.

You may be able to simply make the FC7 firmware updating tool with

If so, skip to step 4 below.

1 Setup environment (if not already)

where you replace /path/to with the appropriate paths.

2 Edit makefile

Using your favorite text editor, open the makefile

Add the line

to the makefile, the relevant section should look like this

3 Make programFC7 executable

verify programFC7 has been made.

4 Program the FC7 See

for usage. For example:

where you replace /path/to with the appropriate paths. This will apply firmware version 8.1.7 to the FC7 in crate 1 slot 11.

cd unifiedCCC/software/flash
make

cd /path/to/gm2daq-modified/environment_setup/
source ./setup_environment.sh
cd /path/to/unifiedCCC/software/flash

export LD_LIBRARY_PATH=$(pwd)/lib:$LD_LIBRARY_PATH
export CPLUS_INCLUDE_PATH="$BOOST_ROOT/include:$CPLUS_INCLUDE_PATH"

vi Makefile

-L$(BOOST_ROOT)/lib

LIBRARY_PATH = -Llib \
 -L/opt/cactus/lib \
 -L$(CACTUS_ROOT)/lib \
 -L$(CACTUS_ROOT)/uhal/uhal/lib \
 -L$(CACTUS_ROOT)/uhal/grammars/lib \
 -L$(CACTUS_ROOT)/uhal/log/lib \
 -L$(CACTUS_ROOT)/extern/pugixml/RPMBUILD/SOURCES/lib \
 -L$(CACTUS_ROOT)/extern/boost/RPMBUILD/SOURCES/lib \
 -L$(BOOST_ROOT)/lib

make
cd bin

./programFC7

./programFC7 1 11 /path/to/unifiedCCC/releases/fc7_unified_0x080107.mcs /path/to/gm2daq-modified/address_tables/FC7_CCC.xml

2.8.4 Configuration

- 18/81 -

2.9 AMC13 (Advanced Mezzanine Card)

2.9.1 Overview

The AMC13 is an AMC developed by Boston University for g-2 as well as experiments at CERN. For our use case, it gathers data

from digitizers whenever it recieves a trigger. It then packages them and sends them to the frontend hosting computer over

10GbE. There is some general information on Boston Unviversity's TWiki page. Some of the python scripts below are written in

python 2, it's easiest to manually update the syntax to be compatible with python 3.

2.9.2 Wired Connections

Optical Link to FC7

The FC7 sends trigger information to the AMC13s over an optical cable. Put a Finisar (or similar) SFP transceiver in the bottom

SFP port in the AMC13. Connect it to the appropriate SFP port in the FC7.

See the labeled DAQ Picture Trigger in AMC13.

10GbE Link to DAQ computer

The AMC13 sends data to DAQ computer over an optical cable. Put an Avago (or similar) SFP transceiver in the top SFP+ port in

the AMC13. Connect it to the 10GbE NIC in the DAQ computer.

See the labeled DAQ Picture 10GbE out.

2.9.3 Configuration

First you should configure the MCH and configure the 10GbE NIC if you haven't already.

The AMC13 is largely configured with AMC13Tool2.exe.The tools to configure the AMC13 are located in the g-2 modified DAQ

repository, so you'll want to install the DAQ software before doing this. For some AMC13s, you need to set the IP addresses and

reconfigure using AMC13Tool2.exe every time the module is power cycled.

Reading IP Address

In your favorite text editor, edit systemVars.py

Ensure DEFAULT_HOST_IP corresponds to the MCH IP for this AMC13's crate. Additionally, ensure the NETWORK_BASE is correct. This

example file is provided:

Then you can run

cd $GM2DAQ_DIR/amc13/amc13_v1_2_18/dev_tools/amc13Config
vi systemVars.py

#File to specify what the default varaibles addresses are used in your system

#Default IP address for commercial MCH module
our NAT MCH address
#DEFAULT_HOST_IP="192.168.1.41"
our Vadatech MCH address
DEFAULT_HOST_IP="192.168.2.15"

#Default AMC13 slot number
DEFAULT_AMC13_SLOT=13

#Location of 'config_tools'. This should never need to be changed
DEFAULT_CONFIG_DIR="./config_tools"

#Network base for your uTCA crate's AMC modules
#NETWORK_BASE="192.168.1"
NETWORK_BASE="192.168.2"

python readIPs.py

2.9 AMC13 (Advanced Mezzanine Card)

- 19/81 -

https://bucms.bu.edu/twiki/bin/view/BUCMSPublic/HcalDTC
https://bucms.bu.edu/twiki/bin/view/BUCMSPublic/AMC13Tool2

Changing IP Address

In your favorite text editor, edit systemVars.py

Ensure DEFAULT_HOST_IP corresponds to the MCH IP for this AMC13's crate. Additionally, ensure the NETWORK_BASE is correct. This

example file is provided:

Then you can run

This will set the T1 (virtex FPGA) IP to 192.168.[crate].13 and the T2 (spartan FPGA) IP to 192.168.[crate].14 .

Then verify you can ping the addresses

Once you've verified you can ping, store these addresses

This will set the T1 (virtex FPGA) IP to 192.168.[crate].13 and the T2 (spartan FPGA) IP to 192.168.[crate].14 whenever the the

AMC13 is powered on.

Building AMC13Tool2.exe

You need to set the IP before doing this.

1 Set up environment

You may need to find where you python includes are

make note of the directory (without the -I). And add it to your C++ include path, for example:

Then add library paths

2 Make AMC13 Library

cd $GM2DAQ_DIR/amc13/amc13_v1_2_18/dev_tools/amc13Config
vi systemVars.py

#File to specify what the default varaibles addresses are used in your system

#Default IP address for commercial MCH module
our NAT MCH address
#DEFAULT_HOST_IP="192.168.1.41"
our Vadatech MCH address
DEFAULT_HOST_IP="192.168.2.15"

#Default AMC13 slot number
DEFAULT_AMC13_SLOT=13

#Location of 'config_tools'. This should never need to be changed
DEFAULT_CONFIG_DIR="./config_tools"

#Network base for your uTCA crate's AMC modules
#NETWORK_BASE="192.168.1"
NETWORK_BASE="192.168.2"

python applyConfig.py -i 192.168.[crate].13

ping 192.168.[crate].13
ping 192.168.[crate].14

python storeConfig.py -i 192.168.[crate].13

python-config --includes

export CPLUS_INCLUDE_PATH=$CPLUS_INCLUDE_PATH:/opt/rh/rh-python36/root/usr/include/python3.6m

export LD_LIBRARY_PATH=$GM2DAQ_DIR/amc13/amc13_v1_2_18/amc13/lib/:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH=$GM2DAQ_DIR/amc13/amc13_v1_2_18/tools/lib:$LD_LIBRARY_PATH

cd $GM2DAQ_DIR/amc13/amc13_v1_2_18/amc13
make

2.9.3 Configuration

- 20/81 -

Note: The make command may complain about the version being invalid. As long as $GM2DAQ_DIR/amc13/amc13_v1_2_18/amc13/

libcactus_amc13_amc13.so gets generated this won't matter.

3 Make AMC13Tool2.exe

Note: I had trouble building AMC13Tool2.exe at first. I had to make some edits to the C++ code to get it to compile; those edits

should be included in the multi-crate (or newer) branch of the DAQ repository.

4 Run AMC13Tool2.exe

Try running AMC13Tool2.exe

Enter h for available commands.

Configuring the AMC13 with AMC13Tool2.exe

AMC13Tool2.exe has a command guide provided by Boston Unversity. For our case we just want to run the following:

0 Add librarys to LD_LIBRARY_PATH

The tool needs to access the shared libraries, a quick way to do this is to just add their location to LD_LIBRARY_PATH like above

1 Run AMC13Tool2.exe

2 Initialize AMC13 for data taking

3 Enable SFPs

4 Change IP of 10GbE Port First read the value and make note:

Then write the value to an IP on your 10GbE port network, for example:

where the hex converts to IP as such:

So This sets the IP to 192.168.51.1. You want to set this value in the ODB to correspond to this IP.

5 Issue DAQ reset

cd $GM2DAQ_DIR/amc13/amc13_v1_2_18/tools
make

bin/AMC13Tool2.exe -c 192.168.[crate #].13 -p $GM2DAQ_DIR/address_tables/

export LD_LIBRARY_PATH=$GM2DAQ_DIR/amc13/amc13_v1_2_18/amc13/lib/:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH=$GM2DAQ_DIR/amc13/amc13_v1_2_18/tools/lib:$LD_LIBRARY_PATH

cd $GM2DAQ_DIR/amc13/amc13_v1_2_18/tools
bin/AMC13Tool2.exe -c 192.168.[crate #].13 -p $GM2DAQ_DIR/address_tables/

en 1-12

daq 1

rv 0x1c1c

wv 0x1c1c 0xc0a83301

c0 = 192
a8 = 168
33 = 51
01 = 1

rd

2.9.3 Configuration

- 21/81 -

https://bucms.bu.edu/twiki/bin/view/BUCMSPublic/AMC13Tool2

6 Quit AMC13Tool2

7 Verify you can ping the 10GbE link For example:

Note: Sometimes this doesn't work for me. You can also try running the commands inside the AMC13Tool2.exe CLI this order

instead:

Updating Firmware

See Boston University's firmware guide for more details.+

1 Download Firmware See the download page for various firmware versions. We want T1 (virtex) version 33087 (0x813f) and

T2 (spartan) version 46 (0x2e). You can download them using wget:

2 Update Firmware

In the CLI:

Select the correct firmware from the options listed. Then repeat for the spartan

3 Verify Firmware Version is Correct

You can verify the firmware updated correctly with

example output:

2.10 Meinberg Card (TCR180PEX or similar)

2.10.1 Overview

The Meinberg card provides GPS timestamps for data triggers. It is an artifact from g-2 that doesn't serve much purpose for the

g-2 modified DAQ. However, it is still a supported trigger system for the Master Frontend.

q

ping 192.168.51.1

en 1-12
daq 1
rd
wv 0x1c1c 0xc0a83301

cd $GM2DAQ_DIR/amc13/amc13_v1_2_18/tools
wget http://ohm.bu.edu/~amc13/CMS/AMC13-Firmware/AMC13T2v0x002e_6slx45t.mcs
wget http://ohm.bu.edu/~amc13/CMS/AMC13-Firmware/AMC13T1v0x813f_7k325t.mcs

bin/AMC13Tool2.exe -c 192.168.[crate #].13 -p $GM2DAQ_DIR/address_tables/

pv

ps

list

Connected AMC13s
*0: SN: 268 T1v: 813f T2v: 002e cf: 192.168.1.13

2.10 Meinberg Card (TCR180PEX or similar)

- 22/81 -

https://bucms.bu.edu/twiki/bin/view/BUCMSPublic/AMC13Tool2#Flash_Programming_Commands_for_f
http://ohm.bu.edu/~amc13/firmware.cgi

2.10.2 Wired Connections

SMA to D9 Connector

A custom cable must be created to connect the meinberg to the signal bank. One end needs to end up as SMA (for the bank)

while the other needs to be a 9pin D-SUB connector (for the meinberg). There is pinout in section 10 (page 27) of the meinberg

manual.

2.10.3 Configuration

See the Meinberg manual for detailed configuration. Furthermore, there are meinberg command line tools detailed on their

website. After the meinberg drivers are installed and loaded, there should be no additional configuration to be done.

August 24, 2025

2.10.2 Wired Connections

- 23/81 -

https://kb.meinbergglobal.com/kb/driver_software/command_line_tools_mbgtools
https://kb.meinbergglobal.com/kb/driver_software/command_line_tools_mbgtools

3. Software Dependencies

3.1 PIONEER Experiment Repositories

Access the repositories here: PIONEER Experiment GitHub.

3.1.1 Contact for Access

Patrick Schwendimann:

 Email: schwenpa@uw.edu

 GitHub: PatrickSchwendimann

Joshua Labounty:

 Email: jjlab@uw.edu

 GitHub: jlabounty

3.2 Setting Up a GitHub SSH Token on RHEL7/9 Systems

3.2.1 1. Generate an SSH Key Pair

Open your terminal.

Generate a new SSH key. Replace your_email@example.com with the email address associated with your GitHub account.

ssh-keygen -t ed25519 -C "your_email@example.com"

If you are using an older system that doesn’t support the ed25519 algorithm, you can use rsa instead:

ssh-keygen -t rsa -b 4096 -C "your_email@example.com"

Follow the prompts to save the key in the default location (~/.ssh/id_ed25519) and set a passphrase.

3.2.2 2. Add the SSH Key to the SSH-Agent

Start the SSH agent in the background:

eval "$(ssh-agent -s)"

Add your SSH private key to the ssh-agent. Replace id_ed25519 with the name of your private key file if you used a different name.

ssh-add ~/.ssh/id_ed25519

3.2.3 3. Add the SSH Key to Your GitHub Account

Copy the SSH key to your clipboard:

cat ~/.ssh/id_ed25519.pub This will display for the key. Copy all of it.

Log in to your GitHub account and navigate to Settings > SSH and GPG keys > New SSH key.

Paste your SSH key into the "Key" field and add a descriptive title.

Click "Add SSH key".

3.2.4 4. Test Your SSH Connection

Test the connection to make sure everything is set up correctly:

ssh -T git@github.com

You should see a message like:

1.

2.

3.

1.

2.

1.

2.

3.

4.

1.

2.

3. Software Dependencies

- 24/81 -

https://github.com/PIONEER-Experiment
mailto:schwenpa@uw.edu
https://github.com/PatrickSchwendimann
mailto:jjlab@uw.edu
https://github.com/jlabounty

Hi username! You've successfully authenticated, but GitHub does not provide shell access.

3.2.5 Example Steps in Terminal

3.3 Development Tools

3.3.1 Overview

These tools include compilers, libraries, and other utilities that facilitate software development and installation.

3.3.2 Installation Guide

This guide should work for ALMA9. You can use dnf for ALMA9, but I prefer to work with yum

1 Install yum package manager

2 Update the package index:

3 Enable the EPEL repository:

4 Install Development Tools and Dependencies:

Note: Some packages may not be available with yum , but are available with dnf . For example, here's how to install

pugixml-devel with dnf :

Some packages are even more burdensome to install. For example, here's how to install libsnl2-devel with dnf :

5 Install Python3

Step 1: Generate an SSH Key Pair
ssh-keygen -t ed25519 -C "your_email@example.com"

Step 2: Start the SSH agent in the background
eval "$(ssh-agent -s)"

Step 3: Add your SSH private key to the ssh-agent
ssh-add ~/.ssh/id_ed25519

Step 4: Copy the SSH key to your clipboard
cat ~/.ssh/id_ed25519.pub

Step 5: Add the SSH key to GitHub via the GitHub web interface

Step 6: Test your SSH connection
ssh -T git@github.com

sudo dnf install yum

sudo yum update

sudo yum install epel-release

sudo yum groupinstall "Development Tools"
sudo yum install cmake gcc-c++ gcc screen subversion binutils libX11-devel libXpm-devel libXft-devel libXext-devel readline-devel libnsl2-devel pugixml-devel

sudo dnf install epel-release
sudo dnf install pugixml-devel

sudo dnf config-manager --set-enabled crb
sudo dnf makecache
sudo dnf install libnsl2-devel

sudo yum install python3-devel

3.2.5 Example Steps in Terminal

- 25/81 -

3.4 ipmitool

3.4.1 Overview

ipmitool is a widely used command-line utility that facilitates interaction with IPMI-enabled devices. It allows administrators to

perform various management tasks remotely and locally. Here's a more detailed look at ipmitool :

Sensor Monitoring: ipmitool can read and display sensor data, such as temperature, voltage, and fan speed, helping to

monitor the health and status of the hardware.

System Management: It provides commands to control system power states (on, off, reset) and to manage system settings

remotely.

Firmware Management: ipmitool supports updating and managing firmware of the IPMI-enabled devices.

Event Log Management: It can display and clear the system event log (SEL), which records critical system events.

Chassis Management: Commands to control and manage the chassis, including power control and identifying LEDs.

User Management: Supports adding, modifying, and deleting IPMI users.

3.4.2 Installation Guide

1 Install ipmitool :

2 Verify Installation:

3.5 ROOT

3.5.1 Overview

ROOT is an open-source data analysis framework developed by CERN. It is widely used in high-energy physics for data

processing, statistical analysis, visualization, and storage. It is needed for some features of Midas.

3.5.2 Installation Guide

General installaiton guides are provided by ROOT at their Installing ROOT and Building ROOT from source pages.

Using yum Package Manager

1 Enable the EPEL repository:

2 Download and Install ROOT:

Building from source

1 Example building latest stable branch from source

•

•

•

•

•

•

sudo yum install ipmitool

ipmitool -V

sudo yum install epel-release

sudo yum install root

git clone --branch latest-stable --depth=1 https://github.com/root-project/root.git root_src
mkdir root_build root_install && cd root_build
cmake -DCMAKE_INSTALL_PREFIX=../root_install ../root_src # && check cmake configuration output for warnings or errors
cmake --build . -- install -j4 # if you have 4 cores available for compilation
source ../root_install/bin/thisroot.sh # or thisroot.{fish,csh}

3.4 ipmitool

- 26/81 -

https://root.cern.ch/
https://root.cern/install/
https://root.cern/install/build_from_source/

Note: Adjust the ROOT version and the download URL as needed. Always check for the latest version on the official ROOT

website. Furthermore, if you are not building from source you are installing precompiled binaries, which may not be up to date

versions of ROOT. For specific versions, you may need to build root from source.

3.6 Midas

3.6.1 Overview

Midas is a data acquisition system used in high-energy physics experiments. Midas provides the following functionalities:

Run control

Experiment configuration

Data readout

Event building

Data storage

Slow control

Alarm systems

... much more ...

3.6.2 Installation Guide

For a general Midas installation, you can follow this Linux Quick Start Guide. For the g-2 modified DAQ, we use a custom version

of midas, which can be cloned and installed as follows:

1 Set experiment name environment variable

2 Create exptab file

3 Install Midas

4 Set MIDASSYS environment variable and add to path

Note: you can hardcode the environment variables MIDASSYS (and add to path), MIDAS_EXPTAB , and MIDAS_EXPT_NAME by adding the

appropriate commands to your .bashrc file. This way, the environment variables are set with each new terminal session for that

user.

•

•

•

•

•

•

•

•

export MIDAS_EXPT_NAME=DAQ

mkdir online
cd online
touch exptab
echo "$MIDAS_EXPT_NAME $(pwd) system" >> exptab
export MIDAS_EXPTAB=$(pwd)/exptab

cd ..
mkdir packages
git clone --recursive git@github.com:PIONEER-Experiment/midas-modified.git midas
cd midas
mkdir build
cd build
cmake ..
make -j$(nproc) install
cd ..

export MIDASSYS=$(pwd)
export PATH=$PATH:$MIDASSYS/bin

3.6 Midas

- 27/81 -

https://root.cern.ch/
https://root.cern.ch/
https://daq00.triumf.ca/MidasWiki/index.php/Main_Page
https://daq00.triumf.ca/MidasWiki/index.php/Quickstart_Linux

3.7 Boost

3.7.1 Overview

Boost is a comprehensive collection of C++ libraries that provide support for various tasks and structures including linear

algebra, multithreading, image processing, regex (regular expressions), and more.

3.7.2 Installation Guide

Boost can be installed on AlmaLinux 9 using package managers or from source. Here are detailed instructions for each method:

Using yum Package Manager

1 Install Development Tools and Dependencies:

2 Install Boost Libraries:

Install Boost 1.76 from Source

1 Download and Extract Boost:

2 Configure and Build Boost:

Replace /usr/local with your desired installation path. Note: You may need to manually link python to boost, to do this:

where /opt/rh/rh-python36/root/usr/include/python3.6m , /opt/rh/rh-python36/root/usr/bin/python3 , /opt/rh/rh-python36/root , and

3.6 are replaced with the appropriate values for your system.

3 Install Boost:

Replace /usr/local with your desired installation path.

4 Verify Boost Installation:

3.8 IPBus (Cactus)

3.8.1 Overview

IPBus, part of the Cactus framework, is a protocol for remote control and monitoring of hardware devices over Ethernet. It's

commonly used in high-energy DAQ systems.

sudo yum groupinstall "Development Tools"
sudo yum install cmake

sudo yum install epel-release
sudo yum install boost-devel

wget https://sourceforge.net/projects/boost/files/boost/1.76.0/boost_1_76_0.tar.gz
tar -xzf boost_1_76_0.tar.gz
cd boost_1_76_0

./bootstrap.sh --prefix=/usr/local

./b2

export CPLUS_INCLUDE_PATH=$CPLUS_INCLUDE_PATH:/opt/rh/rh-python36/root/usr/include/python3.6m
./bootstrap.sh --prefix=/usr/local --with-python="/opt/rh/rh-python36/root/usr/bin/python3" --with-python-root="/opt/rh/rh-python36/root" --with-python-
version="3.6"

./b2 -j$(nproc) install --prefix=/usr/local

sudo ldconfig

3.7 Boost

- 28/81 -

https://www.boost.org/
https://ipbus.web.cern.ch/

3.8.2 Installation Guide

For a general installation guide, see ipbus' Installing the Software page.

Using yum Package Manager

1 Remove previous version (if applicable):

2 Download yum repo file:

3 Install uHAL:

Example building from source

See Compiling and installing from source, an example is below:

Note: You may not need to specify EXTERN_BOOST_INCLUDE_PREFIX , EXTERN_BOOST_LIB_PREFIX , EXTERN_PUGIXML_INCLUDE_PREFIX ,

EXTERN_PUGIXML_LIB_PREFIX . Otherwise, you may need to find where pugixml and boost were installed and replace the paths above

respectively.

3.9 System Monitor

3.9.1 Overview

The system monitor software is a custom software package used to attach system resource usage to midas data banks to aid in

debugging rate slowdowns. It is a required dependency currently. It's contents can be found in the midas databank SI00 where

00 is replaced with the frontend index.

3.9.2 Installation Guide

See the github page for more details.

1 Clone the repository

2 Build the library

3 Verify installation

sudo yum groupremove uhal

sudo curl https://ipbus.web.cern.ch/doc/user/html/_downloads/ipbus-sw.el9.repo -o /etc/yum.repos.d/ipbus-sw.repo

sudo yum clean all
sudo yum groupinstall uhal

sudo yum install pugixml-devel
git clone --depth=1 -b v2.7.3 --recurse-submodules https://github.com/ipbus/ipbus-software.git
cd ipbus-software
make -j$(nproc) EXTERN_BOOST_INCLUDE_PREFIX="/opt/boost/include" EXTERN_BOOST_LIB_PREFIX="/opt/boost/lib" EXTERN_PUGIXML_INCLUDE_PREFIX="/usr/local/include"
EXTERN_PUGIXML_LIB_PREFIX="/usr/local/lib64/"
sudo make install -j$(nproc)

git clone https://github.com/jaca230/system_diagnostics.git
cd system_diagnostics

cd scripts
./build.sh

cd ..
cd bin
./system_diagnostics --help
./system_diagnostics

3.8.2 Installation Guide

- 29/81 -

https://ipbus.web.cern.ch/doc/user/html/software/installation.html
https://ipbus.web.cern.ch/doc/user/html/software/install/compile.html
https://github.com/jaca230/system_diagnostics/tree/main

3.10 Meinberg

3.10.1 Overview

Meinberg provides a range of synchronization solutions, including Network Time Protocol (NTP) servers, precision time protocol

(PTP) solutions, and GPS radio clocks. These tools are essential for accurate time synchronization in various high-precision

applications.

In our case, we use it to apply a GPS timestamp to each event. In reality, this is an artifact from g-2 where seperate systems

needed to be time correlated. Only the "GPS" master trigger mode needs the meinberg.

3.10.2 Installation Guide

For more general information about Meinberg devices, see Meinberg's Installing the Software page.

1 Clone the repository:

Note: Ensure that the URLs and repository paths are correct.

2 Compile the source code:

Note: You may need to use a development kernel. This command will install the development kernel for your current kernel

version.

3 Install the software:

4 Verify installation

The output of this command should look similar to this:

Note: Check the README in mbgtools-lx which provides step by step debugging for this installation.

git clone https://git.meinbergglobal.com/drivers/mbgtools-lx.git
cd mbgtools-lx
git pull

make clean
make

sudo yum install kernel-devel-$(uname -r) gcc make

sudo make install
sudo /sbin/modprobe mbgclock
make install_svc

mbgstatus

mbgstatus v4.2.24 copyright Meinberg 2001-2023

TCR180PEX 039212025430 (FW 1.21, ASIC 9.00) at port 0xE000, irq 47
Date/time: Tu, 2024-01-30 04:36:10.33 UTC
Signal: 0% (IRIG B122/B123, ** UTC offs not configured **)
Status info: *** NO INPUT SIGNAL
Status info: *** Ref. Time is Invalid
Last sync: We, 2023-10-04 11:36:55.00 UTC

** Warning: The IRIG receiver has not yet been configured!

Please make sure the correct IRIG Code Format has been
selected, and enter the correct IRIG Time Offset from UTC
according to the settings of the IRIG generator.
The command "mbgirigcfg" can be used to change the settings.

3.10 Meinberg

- 30/81 -

https://www.meinbergglobal.com/
https://kb.meinbergglobal.com/

February 21, 2025

3.10.2 Installation Guide

- 31/81 -

4. Installing and Running g-2 modified DAQ

4.1 Overview

The g-2 modified DAQ software repurposes the DAQ software used for g-2 to be slightly more flexible. It allows for readout and

communication with hardware described in the Hardware Overview page.

4.1.1 Software Diagram

Note: Not pictured are the hardware links, see Hardware Diagram

MasterGM2

This is a C++ executable midas frontend whose job is to count triggers to check that crate hardware and CaloReadoutAMC13

frontends are not missing triggers.

Trigger Thread: Recieves processed triggers from a source (ex. Meinberg PCIe Card) and reports them to the Midas thread.

Midas Thread: Puts data recieved from trigger thread into a midas bank for each event

•

•

4. Installing and Running g-2 modified DAQ

- 32/81 -

CaloReadoutAMC13

This is a C++ executable midas frontend whose job is to recieve digitized data from the AMC13 and process it before being

placed in midas data banks.

TCP Thread: Recieves TCP packets over 10GbE from an AMC13. Unpacks the data into header, trailer, and payload

information.

"GPU" Thread: Recieves processed data from TCP thread. In g-2, GPUs were used for additional data processing. They have

been turned off and the "GPU" thread is a legacy buffer for the data to go through. No processing is done on the data here.

Midas Thread: Puts data recieved from gpu thread into midas banks for each event

Event Builder

This is a C++ executable midas frontend whose job is to collect data sitting in the midas buffers of all the frontends (MasterGM2,

CaloReadoutAMC13 #1, CaloReadoutAMC13 #2, ...) and combine them into one midas event before being logged to a data file.

4.2 Installer

There is an installer for the g-2 modified DAQ. Though, it is currently out of date and I would not recommend using it.

4.3 Manual Installation Guide

1 Install Software Dependencies

ROOT, Midas, Boost, ipmitool, and Cactus, and the System Monitor are all required to build and run the DAQ frontends.

Meinberg is needed if using GPS mode for the master triggers. Install them following the instructions on the Software

Dependencies Page.

2 Clone the Appropriate Branch

Make sure you have access to the PIONEER Experiment GitHub. See these contacts for gaining access. Additionally, make sure

your github account is linked to your system via SSH token; you can do this by following these instructions. After installing the

software dependencies, you should have a packages directory, where it's best to put the software. To clone, follow the commands

below:

Note: To clone a different branch, simply change the --branch parameter from multi-crate to the appropriate branch. You can

also checkout a different branch after this is done.

3 Setup Environment

Note: The environment detection does not work well for packages installed with yum or other package managers. The correct

directory for these packges is usually /usr , (though cactus installs into /opt).

This will populate a local file environment_variables.txt , check it with:

•

•

•

cd /path/to/packages
mkdir experiment
cd experiment
git clone --branch alma9 git@github.com:PIONEER-Experiment/gm2daq-modified.git
cd gm2daq-modified
git checkout alma9

cd environment_setup
./detect_environment.sh

cat environment_variables.txt

4.2 Installer

- 33/81 -

https://github.com/PIONEER-Experiment

Here's an example of what environment_variables.txt will look like

Verify that each environment variable above points to the correct path for each piece of software. If not, manually change it with

your favorite text editor. Then, run

Note: To set up the environment every time you log in automatically, source this script in your .bashrc file. Modify the path in

the following command to add setup_environment.sh with the --silent flagto the .bashrc file

4 Make Frontends

Make the master frontend:

Make the AMC13 readout frontend:

Make the event builder frontend:

5 Configure Crate Contents File

Edit AMC13xx_config.xml file in your favorite text edit, for instance:

An example file for a one crate system looks like this:

An example file for a two crate system looks this like:

GM2DAQ_DIR=/home/pioneer/packages/experiments/gm2daq-modified
CACTUS_ROOT=/opt/cactus
BOOST_ROOT=/usr
PUGIXML_ROOT=/usr
ROOT_ROOT=/usr
MIDASSYS=/home/pioneer/packages/midas
MIDAS_EXPTAB=/home/pioneer/online/exptab
MIDAS_EXPT_NAME=DAQ

source ./setup_environment.sh

echo "source /path/to/gm2daq-modified/environment_setup/setup_environment.sh --silent" >> ~/.bashrc

cd $GM2DAQ_DIR/frontends/MasterGM2
make clean
make -j$(nproc)

cd $GM2DAQ_DIR/frontends/CaloReadoutAMC13
make clean
make -j$(nproc)

cd $GM2DAQ_DIR/eventbuilder
make clean
make

vi $GM2DAQ_DIR/frontends/AMC13xx_config.xml

<!-- The purpose of this file is to specify what devices are in each frontend crate -->
<!-- To declare frontend AMC13xx create root node <frontend id="xx"> -->
<!-- (xx = "0" will automatically be written as "00" in ODB settings, i.e. single digits are okay) -->
<!-- To declare device in slot 'y' of create, create node <slot id="y" type="device_type" -->
<!-- Select "device_type" from FC7, WFD, or Rider (WFD and Rider are the same device) -->
<?xml version="1.0" encoding="UTF-8"?>
<frontend id="1">
 <slot id="1" type="WFD" />
 <slot id="2" type="WFD" />
 <slot id="3" type="WFD" />
 <slot id="4" type="WFD" />
 <slot id="5" type="WFD" />
 <slot id="6" type="WFD" />
 <slot id="7" type="WFD" />
 <slot id="10" type="FC7" />
 <slot id="11" type="WFD" />
</frontend>

<?xml version="1.0" encoding="UTF-8"?>
<frontend id="1">
 <slot id="1" type="WFD" />
 <slot id="2" type="WFD" />
 <slot id="3" type="WFD" />
 <slot id="4" type="WFD" />

4.3 Manual Installation Guide

- 34/81 -

Note: The frontend id should correspond to the subnet you placed (or will place) the crate components on when configuring the

hardware.

This file is used to build the ODB. Any hardware not specified in this file will be ignored. You can still disable any hardware

listed in this file in the ODB after it has been generated. However if you want to move the FC7 to a different slot, this file and the

ODB need to be editted accordingly.

You then need to copy this file to your experiment directory. You can find that directory with

navigate to the appropriate directory then run the command

6 Start Midas Webpage

Then open localhost:8080 in your favorite web browser.

Note: If this doesn't work, verify that mlogger , mhttpd (or mhttpd6), and mserver and all running as screens, i.e. check:

You can also run mhttpd manually to look for error messages for debugging:

7 Generate the ODB

The first time the frontends are run, they will automatically populate the ODB with the default settings. Run the frontends for the

first time (they will error out):

where {frontend id} is replaced with the frontend ids specified in the crate configuration file above. This command needs to be

run once for each frontend (each crate) to properly generate the ODB.

On the midas webpage view the ODB. Verify that /Equipment/MasterGM2 and each /Equipment/AMC13xxx now exist.

8 Configure the ODB

Before the DAQ can run, the ODB needs to be properly configured. First, make sure the Logger writes data and makes ODB

backup files for each run. Then following the instructions on the ODB configuration page, read through each setting and ensure

they are correct for your setup.

 <slot id="5" type="WFD" />
 <slot id="6" type="WFD" />
 <slot id="7" type="WFD" />
 <slot id="10" type="FC7" />
 <slot id="11" type="WFD" />
</frontend>
<frontend id="2">
 <slot id="3" type="WFD" />
 <slot id="5" type="WFD" />
</frontend>

cat $MIDAS_EXPTAB

cp $GM2DAQ_DIR/frontends/AMC13xx_config.xml .

cd $GM2DAQ_DIR/webpage_scripts
./start_midas_webpage.sh

screen -ls

$MIDASSYS/bin/mhttpd

cd $GM2DAQ_DIR/frontends/MasterGM2
./frontend -e DAQ

cd $GM2DAQ_DIR/frontends/CaloReadoutAMC13
./frontend -e DAQ -i {frontend id}

4.3 Manual Installation Guide

- 35/81 -

4.4 Running the Frontends

4.4.1 Starting Frontends "by Hand"

The first time you run the frontends, I suggest dedicating one terminal window to each so you can inspect for errors. Each

frontend will occupy a terminal window.

Master Frontend

The Master frontend must be started first because it does some general AMC13 and FC7 initilization. Run

The -e flag specifies the experiment name. This is found in the file located at $MIDAS_EXPTAB .

Wait until this frontend prints OK (or until it turns and stays green on the midas status webpage).

AMC13 Readout Frontends

This frontend(s) must be started after the Master frontend has initialized. You can start multiple instances at the same time,

but in my experience this causes midas to complain about ODB space (you may be able to get around this by increasing the ODB

size, I've never tried).

The -e flag specifies the experiment name. This is found in the file located at $MIDAS_EXPTAB .

The -i flag specifies frontend index. {frontend id} is replaced with the frontend ids specified in the crate configuration file

above.

This command needs to be run once for each AMC13 frontend (each crate).

Wait until this frontend prints OK (or until it turns and stays green on the midas status webpage).

Event Builder Frontend

Once all of the other frontends have finished initializing, you can start the event builder.

The -e flag specifies the experiment name. This is found in the file located at $MIDAS_EXPTAB .

The -b flag specifies the buffer it will look for to create events. Any frontend writing to a buffer starting with BUF will added to

an event by the event builder. You can check each frontend's buffer in it's Common page in the ODB, see changing buffer for a

frontend.

Wait until this frontend turns green on the status page.

4.4.2 Screening the Frontends

Screening the frontends is slightly convoluted because you have to stuff all the appropriate environment variables into the screen

session. If you are unfamiliar with screens, you may want view some learning material for using screens. You made need to make

an edit to your .screenrc for this to work properly. Other than this, there are scripts provided to launch the frontends in a screen.

Master Frontend

The Master frontend must be started first because it does some general AMC13 and FC7 initilization. Run

cd $GM2DAQ_DIR/frontends/MasterGM2
./frontend -e DAQ

cd $GM2DAQ_DIR/frontends/CaloReadoutAMC13
./frontend -e DAQ -i {frontend id}

./mevb -e DAQ -b BUF

$GM2DAQ_DIR/frontends/MasterGM2/start-fe-uky.sh DAQ master

4.4 Running the Frontends

- 36/81 -

The first argument is the experiment name which should be the value of $MIDAS_EXPT_NAME .

The second argument is the name for the screen session.

Wait until this frontend prints OK (or until it turns and stays green on the midas status webpage).

AMC13 Readout Frontends

This frontend(s) must be started after the Master frontend has initialized. You can start multiple instances at the same time,

but in my experience this causes midas to complain about ODB space (you may be able to get around this by increasing the ODB

size, I've never tried).

The 1st argument is the frontend index, it should match the -i argument when starting this frontend by hand.

The 2nd argument is the experiment name. This is found in the file located at $MIDAS_EXPTAB .

The 3rd is the name for the screen session.

This command needs to be run once for each AMC13 frontend (each crate).

Wait until this frontend prints OK (or until it turns and stays green on the midas status webpage).

Event Builder Frontend

Once all of the other frontends have finished initializing, you can start the event builder. There is no script for this screen, just a

simple screen command. The flags are the same as when starting this frontend by hand.

4.4.3 Startup Scripts on Midas Programs Page

See the adding program startup scripts page to see how to add startup programs. Make Programs/{Frontend Name}/Required is set

to yes . Then copy the screen command for each respective frontend into Programs/{Frontend Name}/Start Command .

December 9, 2024

$GM2DAQ_DIR/frontends/CaloReadoutAMC13/start-fe-uw.sh 1 DAQ amc13001

screen -dmS event_builder $GM2DAQ_DIR/eventbuilder/mevb -e DAQ -b BUF

4.4.3 Startup Scripts on Midas Programs Page

- 37/81 -

5. Midas Online Data Base (ODB) Configuration

5.1 ODB basics

Below are some basic usage examples of midas' ODB

5.1.1 Accessing the ODB

Command line interface

You can edit the ODB via command line without needing a midas webserver running.

Then you can navigate through the ODB as you would with linux directory commands. From here, you can type "help" or view the

odbedit command list for a list of commands.

Via Midas Webpage

You can start a midas webpage by running mhttpd (or mhttpd6)

Then view the ODB by clicking the ODB button on the left sidebar

5.1.2 General ODB Configuration Examples

For a general guide on how to use Midas' ODB, see the ODB Access and Use wiki page. Below are a few of common ODB

Toggle Logger Data Writing

Change Logger Data Writing Directory

Note: Change /path/to/your/online/directory to whatever directory you want to write data to

$MIDASSYS/bin/odbedit

$MIDASSYS/bin/mhttpd

Field Description

Path /Logger/Write Data

Description Whether or not the Logger will write data

Valid Values yes or no

Suggested Value yes

Field Description

Path /Logger/Data dir

Description What directory the logger will write data to

Valid Values any valid path

Suggested Value /path/to/your/online/directory

5. Midas Online Data Base (ODB) Configuration

- 38/81 -

https://daq00.triumf.ca/MidasWiki/index.php/Odbedit_command_list
https://daq00.triumf.ca/MidasWiki/index.php/ODB_Access_and_Use

Change Data Buffer Logger Writes to File

Toggle Logger to generate ODB backups for each run

Logger Max number of events per run

Logger File name key

Field Description

Path /Logger/Channels/0/Settings/Buffer

Description What directory the logger will write data to

Valid Values any valid buffer name (ex. SYSTEM , BUF001 , ...)

Suggested Value SYSTEM

Field Description

Path /Logger/ODB Dump

Description Whether or not backups of the ODB will be generated after each run

Valid Values yes or no

Suggested Value yes

Field Description

Path /Logger/Channels/0/Settings/Event Limit

Description The threshold number of events to be taken before automatically stopping the run. The number of events

may not be exact. 0 specifies no such threshold is applied.

Valid Values any non-negative integer

Suggested

Value

0

Field Description

Path /Logger/Channels/0/Settings/Filename

Description Whether or not backups of the ODB will be generated after each run. The string is parsed to include both

run and subrun. The first present %0{int}d will correspond to the run number. The second %0{int}d will

correspond to the subrun number. One need not include both.

Valid Values any valid string, though it should have at least one variable input to change with run number.

Suggested

Value

run%05d.mid (For no subruns) or run%05d_%05d.mid (For subruns)

5.1.2 General ODB Configuration Examples

- 39/81 -

Logger Run Duration

Logger Subrun Duration

Logger Subrun Byte Limit

Change Webpage Port

Note: To generate this ODB path, run mhttpd or mhttpd6 at least once. It doesn't need to be successful, it just needs to generate

the WebServer ODB directory.

Field Description

Path /Logger/Run duration

Description The number of seconds between each run. After this amount of time the run wil automatically stop. 0

specifies no such duration is applied.

Valid Values any non-negative integer

Suggested

Value

0

Field Description

Path /Logger/Subrun duration

Description The number of seconds between each subrun. When a new subrun starts, the run does not end, but a

new midas file is logged to. 0 specifies no such duration is applied.

Valid Values any non-negative integer

Suggested

Value

0

Field Description

Path /Logger/Channels/0/Settings/Subrun Byte limit

Description The threshold number of bytes per subrun file before starting a new one. The number of bytes may not

be exact. 0 specifies no such threshold is applied.

Valid Values any non-negative integer

Suggested

Value

yes

Field Description

Path /WebServer/localhost port

Description What port the webserver will run on

Valid Values 0000 to 9999

Suggested Value 8080

5.1.2 General ODB Configuration Examples

- 40/81 -

Disable a Frontend

Note: Every Midas frontend generates a Common section it's ODB. For example, Equipment/AMC13001/Common will be generated. This

is useful for toggling off crates in multicrate setups.

Change the Data Buffer for a Frontend

Note: The event builder assumes every buffer for events starts with BUF . So it's best to name frontends BUF followed by their 3

digit frontend number. For example, for AMC13001 frontend, BUF001 is a good name.

Changing Run Number

Note: If one decreases the run number, the logger will overwrite that run's data if a run is performed with the old run number

again. For this reason, when loading and old ODB save you will want to increase the run number to a value larger than your last

successful run number before taking data.

5.2 g-2 Modified DAQ Specific ODB Configuration

Below are some important settings in the ODB for the g-2 modified DAQ. This is not a complete description of every setting in the

ODB. Many settings are artifacts from g-2 that don't serve any purpose anymore. You can find a script that will automatically

set all these parameters to their suggested values in scripts/apply_recommended_ODB_settings.py .

Field Description

Path /Equipment/{Frontend Name}/Common/Enabled

Description Whether a frontend is enabled for use or not

Valid Values yes or no

Suggested Value yes

Field Description

Path /Equipment/{Frontend Name}/Common/Buffer

Description What midas buffer the frontend will write to

Valid Values any valid string

Suggested Value BUF{3 digit frontend #}

Field Description

Path /Runinfo/Run number

Description The run the number for the experiment

Valid Values any valid integer

Suggested Value 1

5.2 g-2 Modified DAQ Specific ODB Configuration

- 41/81 -

5.2.1 Master Frontend ODB settings

Trigger Source

Note: The meaning of each value is specified below:

GPS: Uses the Meinberg GPS timestamps for Master triggers.

PP: Uses parallel port signals as the trigger source (currently broken).

Fake: Uses a fake signal for testing purposes. Further configuration in ODB.

Socket: Uses a socket connection as the trigger source (untested).

None: No trigger source is used, no master triggers are made.

ODB: Reads ODB to send triggers at a rate similar to the rate the AMC13 receives triggers.

FC7: Uses FC7's trigger counter over IPMI to trigger events

Front End Offset

Encoder Front End

5.2.2 AMC13 Readout Frontend ODB settings

Any setting not mentioned is either an artifact of g-2 (doesn't do anything) or shouldn't need to be modified from its default

value. For example, most of the TQ01 , TQ02 , TQ03 , and TQ04 no longer function.

Field Description

Path /Equipment/MasterGM2/Settings/Globals/Trigger Source

Description Determines what source the Master will use to trigger events

Valid Values GPS , PP (currently broken), Fake , Socket (untested), None , ODB , and FC7

Suggested Value FC7

•

•

•

•

•

•

•

Field Description

Path /Equipment/MasterGM2/Settings/Globals/Front End Offset

Description Offset for index for the IPs of the first frontend. For example if your MCH IP is 192.168.3.15, then you'd

want this offset to be 3.

Valid Values Positive integer < 1000

Suggested

Value

1

Field Description

Path /Equipment/MasterGM2/Settings/Globals/Encoder Front End

Description Identifier for frontend that corresponds to the crate containing the encoder FC7

Valid Values AMC13001 , AMC13002 , ...

Suggested Value AMC13001

5.2.1 Master Frontend ODB settings

- 42/81 -

Send to Event Builder

Note: It is best to have this set to yes as it won't affect data readout even if the event buidler isn't used.

MCH IP Address

Note: This is the address in which the frontends sent IPMI commands to. If this is incorrect none of the crate components can be

properly intialized for a data run. Each frontend (crate) should have it's own MCH IP address.

CCC: FC7 Slot Number (1-12)

Note: For crates without an FC7, this value does not matter. Just set it to the same value as the crate with the encoder FC7.

CCC: FMC Location (top,bottom)

Note: See FC7 Labeling to decide whether your FMC SFP interface is on the top or the bottom (the FC7 firmware requires the

SFP interface FMC is in the top slot).

Field Description

Path /Equipment/AMC13{frontend #}/Settings/Globals/Send to Event Builder

Description Defines whether or not data is sent to event builder frontend

Valid Values yes or no

Suggested Value yes

Field Description

Path /Equipment/AMC13{frontend #}/Settings/Globals/MCH IP Address

Description Set to MCH IP address for the MCH in this crate

Valid Values Any valid IP address

Suggested Value 192.168.1.15

Field Description

Path /Equipment/AMC13{frontend #}/Settings/Globals/CCC: FC7 Slot Number (1-12)

Description Slot number of the encoder FC7 in the uTCA crate

Valid Values 1 , 2 , ... 12

Suggested Value 10

Field Description

Path /Equipment/AMC13{frontend #}/Settings/Globals/CCC: FMC Location (top, bottom)

Description The location of the SFP interface FMC card on the FC7 board

Valid Values top or bottom

Suggested Value top

5.2.2 AMC13 Readout Frontend ODB settings

- 43/81 -

CCC: FMC SFP Number (1-8)

Note: See FC7 Labeling to decide which port your optical connection is.

AMC13 10GbE Link Enable

AMC13 SFP IP Address

Note: This is the AMC13 IP that data is sent over. If this is incorrect, not data will be transferred from the crate. Each frontend

(crate) should have a different AMC13 SFP IP address.

AMC13 SFP Port Number

Note: 0x00001234 corresponds to the top port on the AMC13. I would not change this value unless you know what you're doing.

Field Description

Path /Equipment/AMC13{frontend #}/Settings/Globals/CCC: FMC SFP Number (1-8)

Description The FC7 SFP slot number this AMC13 is connected to by optical cable

Valid Values 1 , 2 , ... 8

Suggested Value 1 (for the first crate)

Field Description

Path /Equipment/AMC13{frontend #}/Settings/Link01/Enabled

Description Toggles the 10GbE link for this AMC13

Valid Values 0 or 1

Suggested Value 1

Field Description

Path /Equipment/AMC13{frontend #}/Settings/Link01/AMC13 SFP IP Address

Description Specifies the 10GbE link IP

Valid Values Any valid IP

Suggested Value 192.168.50.1

Field Description

Path /Equipment/AMC13{frontend #}/Settings/Link01/AMC13 SFP Port Number

Description Specifies which SFP port on the AMC13 is used for the 10GbE link

Valid Values 0x00001234 , unsure about others

Suggested Value 0x00001234

5.2.2 AMC13 Readout Frontend ODB settings

- 44/81 -

AMC13 T1 Firmware Version Required

AMC13 T2 Firmware Version Required

AMC13 T1 Address Table Location

AMC13 T2 Address Table Location

Enable FC7

Field Description

Path /Equipment/AMC13{frontend #}/Settings/AMC13/T1 Firmware Version Required

Description The minimum required firmware version for the virtex (T1) FPGA in the AMC13

Valid Values Any positive integer

Suggested Value 33087

Field Description

Path /Equipment/AMC13{frontend #}/Settings/AMC13/T2 Firmware Version Required

Description The minimum required firmware version for the spartan (T2) FPGA in the AMC13

Valid Values Any positive integer

Suggested Value 46

Field Description

Path /Equipment/AMC13{frontend #}/Settings/AMC13/T1 Address Table Location

Description The path to the AMC13 virtex (T1) adress table xml file

Valid Values Any valid path

Suggested Value $GM2DAQ_DIR/address_tables/AMC13XG_T1.xml

Field Description

Path /Equipment/AMC13{frontend #}/Settings/AMC13/T2 Address Table Location

Description The path to the AMC13 spartan (T2) adress table xml file

Valid Values Any valid path

Suggested Value $GM2DAQ_DIR/address_tables/AMC13XG_T2.xml

Field Description

Path /Equipment/AMC13{frontend #}/Settings/FC7-{slot #}/Common/Enabled

Description Whether or not this FC7 in the crate is enabled or not

Valid Values yes or no

Suggested Value yes

5.2.2 AMC13 Readout Frontend ODB settings

- 45/81 -

FC7 Address Table

FC7 Board Type

Note: The FC7 firmware has been modified so now the encoder FC7 can do the job of the trigger and encoder FC7s.

FC7 Firmware Version Required

Internal Trigger

Note: This is useful for debugging because it removes the need for having/building an external trigger signal. However, the

triggers are periodic so the digitized data will be "random" windows of signal or noise.

Field Description

Path /Equipment/AMC13{frontend #}/Settings/FC7-{slot #}/Common/Address Table Location

Description The path to the FC7 address table xml file

Valid Values Any valid path

Suggested Value $GM2DAQ_DIR/address_tables/FC7_CCC.xml

Field Description

Path /Equipment/AMC13{frontend #}/Settings/FC7-{slot #}/Common/Board (encoder,fanout,trigger)

Description What job the FC7 is set to do

Valid Values encoder , fanout , or trigger

Suggested Value encoder

Field Description

Path /Equipment/AMC13{frontend #}/Settings/FC7-{slot #}/Common/FPGA Firmware Version Required

Description The minimum required firmware version for the FC7

Valid Values Any valid string (ex. 8.1.7)

Suggested Value 8.1.7

Field Description

Path /Equipment/AMC13{frontend #}/Settings/FC7-{slot #}/Encoder/Internal Trig Enabled

Description Whether an external or internal trigger are used to trigger events

Valid Values yes or no

Suggested Value no

5.2.2 AMC13 Readout Frontend ODB settings

- 46/81 -

Internal Trigger Period (us)

Note: After each trigger, there is some deadtime. Therefore this value should be longer than the deadtime; otherwise there will

be unintended results.

Internal Trigger Pulse Width (ns)

TTC deadtime (ns)

Note: The achievable rate is limited by this value. For example, if using the suggested value the DAQ cannot trigger at more than

10 kHz.

Enabled WFD5

Field Description

Path /Equipment/AMC13{frontend #}/Settings/FC7-{slot #}/Encoder/Internal Trig Period (us)

Description The period of the internal trigger in micro seconds

Valid Values any positive integer

Suggested Value 500

Field Description

Path /Equipment/AMC13{frontend #}/Settings/FC7-{slot #}/Encoder/Internal Pulse Width (ns)

Description The width of the internal trigger pulse in nanoseconds

Valid Values any positive integer

Suggested Value 100

Field Description

Path /Equipment/AMC13{frontend #}/Settings/FC7-{slot #}/Encoder/TTC deadtime (ns)

Description The amount of deadtime (time with no new triggers) after each trigger

Valid Values any positive integer

Suggested Value 100000

Field Description

Path /Equipment/AMC13{frontend #}/Settings/Rider{slot #}/Board/Address Table Location

Description Whether or not this WFD5 is active for data taking

Valid Values yes or no

Suggested Value yes

5.2.2 AMC13 Readout Frontend ODB settings

- 47/81 -

WFD5 Address Table

WFD5 Master Firmware Version

WFD5 Channel Firmware Version

WFD5 Digitization Frequency

WFD5 Circular Buffer Mode Enabled

Field Description

Path /Equipment/AMC13{frontend #}/Settings/Rider{slot #}/Board/Address Table Location

Description The path to the WFD5 address table xml file

Valid Values Any valid path

Suggested Value $GM2DAQ_DIR/address_tables/WFD5.xml

Field Description

Path /Equipment/AMC13{frontend #}/Settings/Rider{slot #}/Board/Master Firmware Version

Description Channel Firmware version for the WFD5

Valid Values any valid version string

Suggested Value 3.1.1

Field Description

Path /Equipment/AMC13{frontend #}/Settings/Rider{slot #}/Board/Chanel Firmware Version

Description Channel Firmware version for the WFD5

Valid Values any valid version string

Suggested Value 3.1.1

Field Description

Path /Equipment/AMC13{frontend #}/Settings/Rider{slot #}/Board/Gitization Frequency (MHz)

Description Frequency at which samples are digitized

Valid Values 800 divided by any power of 2 (for example, 200 is valid)

Suggested Value 800

Field Description

Path /Equipment/AMC13{frontend #}/Settings/Rider{slot #}/Board/CircBuf Mode: Enabled

Description Puts a WFD5 into circular buffer mode for data taking

Valid Values yes or no

Suggested Value yes

5.2.2 AMC13 Readout Frontend ODB settings

- 48/81 -

WFD5 Waveform Length

Note Each sample corresponds to a time window of 1/Digitization Frequency. So by default each sample corresponds to a 1.25 ns

time window.

WFD5 Waveform Presamples

Note: This value must be less than the value of WFD5 Waveform Length.

WFD5 Channel Enabled

WFD5 Channel Input Signal Offset

Field Description

Path /Equipment/AMC13{frontend #}/Settings/Rider{slot #}/Board/Async CBuf Waveform Length

Description The total number of samples digitized for each waveform trigger

Valid Values Any positive integer

Suggested Value 800

Field Description

Path /Equipment/AMC13{frontend #}/Settings/Rider{slot #}/Board/Async CBuf Waveform Presamples

Description How many of the waveform samples are taken before the trigger

Valid Values Any positive integer

Suggested Value 600

Field Description

Path /Equipment/AMC13{frontend #}/Settings/Rider{slot #}/Channel{channel #}/Enabled

Description Whether this channel of the WFD5 is enabled for data taking or not

Valid Values yes or no

Suggested Value yes

Field Description

Path /Equipment/AMC13{frontend #}/Settings/Rider{slot #}/Channel{channel #}/Input Signal Offset

Description Offset for pedestals signal sits on. Range of ADC values is -2048 to 2047. Setting of 0 corresponds to a

pedestal of ~ -1750 , value of 65535 corresponds to a pedestal of ~ 1750

Valid Values Integer between 0 and 65535 (2 byte positive int)

Suggested

Value

0 for positive signals, 65535 for negative signals.

5.2.2 AMC13 Readout Frontend ODB settings

- 49/81 -

TQ methods GPU Bank Processing

Note: All of the TQ method settings are artifacts of g-2. We just want to make sure they are off.

WFD5 Async Mode

"Async Mode" refers to a mode where each midas event contains 20 traces from each digitizer channel, which may increase the

effective data collection rate. However, this mode is currently not working.

To turn on async mode set WFD5 Async Mode Enabled (in another place) and TTC Async Mode Enabled to yes . For each

digitizer, set WFD5 Async Mode Enabled to yes . Furthermore WFD5 Circular Buffer Mode should be set to no . Otherwise the

behavior will be unpredictable. I understand this is a bit convoluted, but this was hastily put together during the 2023 PSI LYSO

test beam. There is slightly more documentation on this elog entry.

WFD5 ASYNC MODE ENABLED

WFD5 ASYNC MODE ENABLED (IN ANOTHER PLACE)

Field Description

Path /Equipment/AMC13{frontend #}/Settings/TQ{#}/GlobalParameters/GPU T,Q,P bank processing

Description Whether the GPU is used to process this midas bank or not

Valid Values yes or no

Suggested Value no

Field Description

Path /Equipment/AMC13{frontend #}/Settings/TQ{#}/GlobalParameters/GPU H bank processing

Description Whether the GPU is used to process this midas bank or not

Valid Values yes or no

Suggested Value no

Field Description

Path /Equipment/AMC13{frontend #}/Settings/Rider{slot #}/Board/Async Mode: Enabled

Description Puts a WFD5 into async mode for data taking

Valid Values yes or no

Suggested Value no

Field Description

Path /Equipment/AMC13{frontend #}/Settings/FC7-{slot #}/Encoder/WFD5 Async Mode Enabled

Description Lets FC7s know WFD5s are in async mode for data taking

Valid Values yes or no

Suggested Value no

5.2.2 AMC13 Readout Frontend ODB settings

- 50/81 -

https://maxwell.npl.washington.edu/elog/pienuxe/R23/139

TTC ASYNC MODE ENABLED

August 23, 2025

Field Description

Path /Equipment/AMC13{frontend #}/Settings/FC7-{slot #}/Encoder/TTC Async Mode Enabled

Description Puts FC7 into async mode for data taking

Valid Values yes or no

Suggested Value no

5.2.2 AMC13 Readout Frontend ODB settings

- 51/81 -

6. Some Midas Information and Tips

TRIUMF has a great Midas Wiki page. For general midas information, this is a good place to start. Below, there are some specific

tips about midas that are helpful when using the g-2 modified DAQ.

6.1 Data Storage location

By default midas files (.mid) and compressed midas files (.mid.lz4) will be stored in the same directory that the file $MIDAS_EXPTAB

points to for the experiment (usually the "online" directory). This can be can be changed to a different directory in the Logger's

ODB settings.

6.2 Multiple Experiments on One Midas Installation

To run multiple experiments (with different ODBs), one needs to modify the $MIDAS_EXPTAB file. See the Exptab wiki page. Edit

$MIDAS_EXPTAB in your favorite text editor, for example:

Then add a new line for another experiment, the experiment directory must be different:

replace the paths above to correspond to a path on your system. These are the directories the ODB information is stored.

Make sure all desired midas applications use the correct experiment name. For example, to start a midas webpage for

experiment test , run

6.3 Midas Files to ROOT Files (unpacker)

See the unpacker software page.

Once that is installed, you can convert midas files to root files using the command:

6.4 Recovering from a Corrupted ODB

There should be a folder in $GM2DAQ_DIR/restore_corrupted_ODB or $GM2DAQ_DIR/scripts/restore_corrupted_ODB (if not, you may need

to look in the default branch). Navigate to this directory and run one of the following two scripts:

Fun version:

Less fun version:

vi $MIDAS_EXPTAB`

DAQ /experiment_one/home/online system
test /experiment_two/home/online system

$MIDASSYS/bin/mhttpd -e test

./pioneer_unpacker MIDAS_FILE.mid.lz4 0 detector_mapping.json

./midas_restore.sh

./delete_and_restore_odb.sh

6. Some Midas Information and Tips

- 52/81 -

https://daq00.triumf.ca/MidasWiki/index.php/Main_Page
https://daq00.triumf.ca/MidasWiki/index.php/Exptab

Both scripts have the exact same functionality; they effectively stop all running screens (midas related or not), delete all ODB

data, and load a backup file. However the first script has some fun surprises for the user's pleasure. If this script doesn't work,

you can follow the steps in "Fixing a persistently corrupted ODB by hand".

Note:

6.5 Fixing a corrupted ODB by hand

These instructions are adapted from the midas wiki's page on recovering from a corrupted ODB. For most cases, you can just

"nuke" the ODB and then load an ODB save file from a previous run. Make sure you have an ODB backup file to load (ex.

run001234.json).

1 Stop midas screens by hand

Note all midas screens running and close them, for instance:

Verify they are all close with

once again.

2 Reset the ODB to midas default

Then follow the text prompts.

For example:

3 Load old ODB

Replace the path online/run001234.json with the location of an actual ODB backup that you know was working.

6.5.1 Fixing a persistently corrupted ODB by hand

If nothing else works to fix a corrupted ODB, these steps act as a "brute force" reset. The steps below are actually the same steps

done in the scripts mentioned in Recovering from a Corrupted ODB. Make sure you have an ODB backup file to load (ex.

run001234.json).

1 Forcefully close out of all screens on the machine

2 Delete Shared Memory Files

screen -ls

screen -X -S mhttpd quit
screen -X -S mlogger quit
screen -X -S mserver quit

screen -ls

$MIDASSYS/bin/odbinit -s {ODB memory} --cleanup

$MIDASSYS/bin/odbinit -s 1024MB --cleanup

$MIDASSYS/bin/odbedit -c "load online/run001234.json"'

killall mserver mevb mlogger mhttpd mhttpd6 frontend mtransition > /dev/null 2>&1
killall -9 mserver mevb mlogger mhttpd mhttpd6 frontend mtransition > /dev/null 2>&1
$MIDASSYS/progs/mcleanup > /dev/null 2>&1
screen -wipe > /dev/null 2>&1
killall screen > /dev/null 2>&1
screen -wipe > /dev/null 2>&1

export EXP=$MIDAS_EXPT_NAME
export EXP_PATH=$(dirname "$MIDAS_EXPTAB")
rm -rf /dev/shm/*_${EXP}_ODB_* > /dev/null 2>&1

6.5 Fixing a corrupted ODB by hand

- 53/81 -

https://daq00.triumf.ca/MidasWiki/index.php/FAQ#How_to_recover_from_a_corrupted_ODB

Note: EXP_PATH=$(dirname "$MIDAS_EXPTAB") will be correct if you've followed this guide exclusively. However, in general the path

you want is actually in the content of the $MIDAS_EXPTAB file. For example, the output of cat $MIDAS_EXPTAB could look like:

Really you want export EXP_PATH=/home/installation_testing/online , but in our setup we choose to put $MIDAS_EXPTAB in the

"online" directory anyways, so this is the same as above. Just be mindful if your $MIDAS_EXPTAB file is located in a place other than

your experiment ODB files.

3 Create new ODB and load old ODB file

where JsonPath and run_number are replaced with the paths to an ODB backup and the desired starting run number respectively.

You should set the run number to a value higher than your last run number as to not overwrite and data.

4 Reload midas webpage

Verify everything looks as expected on the webpage. Then you can reload frontends and any other screens that were running

beforehand.

6.6 Loading an ODB save

You can use the ODB to load an old ODB save file.

Then in the command line interface:

Alternatively, you can "stuff" commands into odbedit from command line:

where online/run001234.json should be replaced with a path to a valid ODB save file.

6.7 Changing the ODB size

See the midas wiki page for changing ODB size.

1 Save Current ODB if needed

2 Stop midas screens by hand

rm -rf $EXP_PATH/.*.SHM > /dev/null 2>&1
rm -rf $EXP_PATH/.*.TXT > /dev/null 2>&1

DAQ /home/installation_testing/online system
SIM_DAQ /home/installation_testing/online system

export JsonPath=online/run001234.json
export run_number=1000
$MIDASSYS/bin/odbedit -e $EXP -s 40000000 -c "ls" > /dev/null 2>&1
$MIDASSYS/bin/odbedit -e $EXP -c "load $JsonPath" > /dev/null 2>&1
$MIDASSYS/bin/odbedit -e $EXP -c "set \"/Runinfo/Run number\" $run_number" > /dev/null 2>&1

$MIDASSYS/bin/mhttpd

$MIDASSYS/bin/odbedit

load online/run001234.json

$MIDASSYS/bin/odbedit -c "load online/run001234.json"'

$MIDASSYS/bin/odbedit -c "save current_odb.odb"

screen -ls

6.6 Loading an ODB save

- 54/81 -

https://daq00.triumf.ca/MidasWiki/index.php/FAQ#Increasing_Number_of_Hot-links

Note all midas screens running and close them, for instance:

Verify they are all close with

once again.

3 Delete Shared Memory Files

Note: EXP_PATH=$(dirname "$MIDAS_EXPTAB") will be correct if you've followed this guide exclusively. However, in general the path

you want is actually in the content of the $MIDAS_EXPTAB file. For example, the output of cat $MIDAS_EXPTAB could look like:

Really you want export EXP_PATH=/home/installation_testing/online , but in our setup we choose to put $MIDAS_EXPTAB in the

"online" directory anyways, so this is the same as above. Just be mindful if your $MIDAS_EXPTAB file is located in a place other than

your experiment ODB files.

4 Edit file $MIDASSYS/include/midas.h

Find:

Change this to:

Note: This can be changed to a larger number (up to some limit I don't know)

5 Edit file $MIDASSYS/src/odb.cxx

Find:

Change to:

Note: These numbers follow a formula on the wiki, they are related to the variable MAX_OPEN_RECORDS

6 Remake MIDAS

Follow the wiki's quickstart linux guide.

screen -X -S mhttpd quit
screen -X -S mlogger quit
screen -X -S mserver quit

screen -ls

export EXP=$MIDAS_EXPT_NAME
export EXP_PATH=$(dirname "$MIDAS_EXPTAB")
rm -rf /dev/shm/*_${EXP}_ODB_* > /dev/null 2>&1
rm -rf $EXP_PATH/.*.SHM > /dev/null 2>&1
rm -rf $EXP_PATH/.*.TXT > /dev/null 2>&1

DAQ /home/installation_testing/online system
SIM_DAQ /home/installation_testing/online system

#define MAX_OPEN_RECORDS 256

#define MAX_OPEN_RECORDS 65536

assert(sizeof(DATABASE_CLIENT) == 2112);
assert(sizeof(DATABASE_HEADER) == 135232);

assert(sizeof(DATABASE_CLIENT) == 524352);
assert(sizeof(DATABASE_HEADER) == 33558592);

DATABASE_CLIENT = 64 + 8*MAX_OPEN_RECORDS
DATABASE_HEADER = 64 + 64*DATABASE_CLIENT

cd midas
mkdir build
cd build
cmake ..
make install

6.7 Changing the ODB size

- 55/81 -

https://daq00.triumf.ca/MidasWiki/index.php/Quickstart_Linux#MIDAS_Package_Installation

7 Create new ODB

Note: I had trouble unless the number specified by -s was the different than the previous ODB. From there it will prompt you to

delete a file. I think this file contains information about the maximum number of hotlinks and must be deleted every time you

want to increase the number of hotlinks

8 Load old settings (if saved)

9 Rebuild all programs with midas dependencies

Because we rebuilt midas, this also means we have to rebuild the frontends. See the "Make Frontends" section of the frontend

manual installation guide. Any other software you have built against this version of midas must also be rebuilt (that includes the

publisher, for example).

6.8 Adding Program Startup Scripts

After any frontend is run, it will appear in the ODB under /Programs/{Frontend Name} . Here there are some settings for the

program. The I use for starting frontends are

Required:

Set /Programs/{Frontend Name}/Required to yes to pin the program onto the Programs page accessible from the left sidebar. In

other words, when the frontend is not running, it will not dissapear from the programs page.

Start Command:

Change /Programs/{Frontend Name}/Start Command to a command that you when to be run when hitting the Start {Frontend Name}

button on the Programs page. This is allows the user to start a frontend in the background from the midas webpage; i.e. you can

avoid starting frontends from command line.

December 9, 2024

$MIDASSYS/bin/odbinit -s 1024MB --cleanup

$MIDASSYS/bin/odbedit -c "load current_odb.odb"

6.8 Adding Program Startup Scripts

- 56/81 -

7. Additional Software

7.1 Eigen

7.1.1 Overview

Eigen is a high-performance C++ library for linear algebra operations, including matrices, vectors, numerical solvers, and

related algorithms. It is widely used in various fields such as scientific computing, machine learning, and computer graphics due

to its efficiency and ease of use. Eigen provides a wide range of matrix sizes and storage formats, making it versatile for both

small and large-scale computations.

7.1.2 Installation Guide

Via yum (ALMA9)

From Source (CentOS7)

7.2 Midas Event Unpacker

7.2.1 Overview

This is a midas event unpacker used for the g-2 modified DAQ system during the 2023 LYSO test beam, but has seen more

development afterwards. The github page has it's own list of instructions for download and use.

7.2.2 Installation Guide

Follow the instructions on the github page. In particular:

7.2.3 Usage

Follow the instructions on the github page. In particular run the following command over a generated midas file.

sudo yum install -y eigen3-devel

git clone https://gitlab.com/libeigen/eigen.git
cd eigen
mkdir build && cd build
cmake ..
make
sudo make install

git clone --branch develop git@github.com:PIONEER-Experiment/test-beam-2023-unpacker.git unpacker
cd unpacker
mkdir build
cd build
cmake ..
make install

./pioneer_unpacker MIDAS_FILE.mid.lz4 0 detector_mapping.json

7. Additional Software

- 57/81 -

https://github.com/PIONEER-Experiment/test-beam-2023-unpacker/tree/develop
https://github.com/PIONEER-Experiment/test-beam-2023-unpacker/tree/develop
https://github.com/PIONEER-Experiment/test-beam-2023-unpacker/tree/develop

7.3 Publisher

7.3.1 Overview

The publisher is C++ project aimed to publish data over a socket using ZeroMQ. There are two versions:

The General Publisher which is stable and well documented, but does not provide any midas interfacing.

The Midas Event Publisher which is less stable and not well document, but does provide midas interfacing.

7.3.2 General Publisher

The general publishing tool is a framework used to publish data over ZeroMQ seemlessly. This tool generally only depends on

ZeroMQ and cppZMQ. This branch does not interface with midas at all. However, there is still useful information on this

branch about how to configure the publisher and how it works, see the wiki for the publisher.

Installation Guide

Follow the steps on the wiki.

7.3.3 Midas Event Publisher

Warning: This branch was hastefully put together. As a result it is not straightfoward to install and has many issues. Try

following this guide first, but if you have issues you can contact the creator (Jack Carlton).

This is a different branch of the publisher specialized to using mdump and the midas event unpacker to publish unpacked midas

data from a live data run over a socket using zeroMQ. In some cases, we have found that using mdump in this manner

lowers the rate capabilites of the DAQ. However, this software is still useful for low rate data quality monitoring.

These features are located on the develop branch of the publisher. Which can be installed with the following steps

Installation Guide

1 Clone the branch

2 Set up environment

Ensure each environment variable points to the correct directory. If not, fix it using your favorite text editor. See this example

below:

Note: BOOST_1_70_0_ROOT is poorly named. This can point to any version of boost past version 1.70.0.

Note: If this turns out to be too painful a process, you may find it easier to hardcode CMakeLists.txt. For example, one would

find where the CPPZMQ header files are and replace the line $ENV{CPPZMQ_ROOT}/include with a hardcoded path.

1.

2.

git clone -b devel git@github.com:PIONEER-Experiment/midas_publisher.git publisher
cd publisher

./detect_environment.sh
cat environment_variables.txt

MIDASSYS=/home/installation_testing/packages/midas
MIDAS_EXPTAB=/home/installation_testing/online/exptab
MIDAS_EXPT_NAME=DAQ
UNPACKING_ROOT=/home/installation_testing/packages/unpacking
ROOT_ROOT=/home/installation_testing/packages/ROOT
BOOST_1_70_0_ROOT=/home/installation_testing/packages/boost-1.70.0
ZEROMQ_ROOT=/home/installation_testing/packages/zeroMQ
CPPZMQ_ROOT=/home/installation_testing/packages/cppzmq
EIGEN_ROOT=/home/installation_testing/packages/eigen-3.4.0

source ./setup_environment.sh

7.3 Publisher

- 58/81 -

https://github.com/PIONEER-Experiment/midas_publisher/tree/main?tab=readme-ov-file
https://github.com/PIONEER-Experiment/midas_publisher/wiki
https://github.com/PIONEER-Experiment/midas_publisher/wiki/Compiling-the-Publisher
https://daq00.triumf.ca/MidasWiki/index.php/Mdump
https://github.com/PIONEER-Experiment/midas_publisher/tree/devel?tab=readme-ov-file
https://github.com/PIONEER-Experiment/midas_publisher/blob/devel/CMakeLists.txt

3 Build and install

4 Edit config

Edit config.json in your favorite text editor, for instance:

In particular,

needs to be set to a valid detector mapping. The unpacking library has one in unpacking/python/detector_mapping.json

You also may need to change the buffer in

to SYSTEM or whatever buffer you want the publisher to listen to.

7.3.4 Usage

"By Hand"

Once installed, you can simply run

And the publisher will begin. You can increase the verbose setting in config.json to see what it's publishing in real time.

"Cronjob" Screen

In the scripts directory you can start a "cronjob" screen that runs the publisher

You can stop this screen with

Note: This isn't really a cronjob, but rather a shell script that periodically kills the publisher and restarts it. There is a memory

leak in this branch that hasn't been tracked down, and this is band-aid solution.

7.4 Basic DQM

7.4.1 Overview

This is a "generalized" DQM that samples a midas experiment running the g-2 modified DAQ and displays some traces from each

active channel. It comes packaged with publisher right now, but may migrate to it's own seperate project.

7.4.2 Installation Guide

See installation guide for midas event publisher.

cd ..
mkdir build
cd build
cmake ..
make install -j$(nproc)

cd ..
vi config.json

"detector-mapping-file": "/home/installation_testing/packages/unpacking/python/detector_mapping.json"

"command": "$(MIDASSYS)/bin/mdump -l 1 -z BUF001 -f d",

./publisher

cd scripts
./screen_publisher_cronjob.sh

./stop_publisher_cronjob_screen.sh

7.3.4 Usage

- 59/81 -

You also need some python packages:

Note: You may need to use pip3 on some systems.

7.4.3 Usage

The midas event publisher needs to be running for the webpage to get data to display. The webpage will still appear

otherwise, but you will not see data incoming. See midas event publisher usage. First, navigate to the publisher root directory.

Then

"By Hand"

Note: You may need to use python3 on some systems.

Then open your favorite web browser to localhost:8000 to view the webpage.

Screening Script

Then open your favorite web browser to localhost:8000 to view the webpage.

To stop the webpage,

7.5 Crate Monitor

7.5.1 Overview

The crate monitor is a webpage to view the status of g-2 crate components such as the WFD5, FC7, and AMC13.

7.5.2 Installation Guide

1 Clone the repository

2 Edit run.py

In your favorite text editor, edit run.py . For example, with vi :

In particular, change these variables

pip install Flask Flask-SocketIO pyzmq

cd dashboard_webpage
python main.py

cd scripts
./screen_webpage.sh

./stop_webpage_screen.sh

git clone git@github.com:PIONEER-Experiment/utcaMonitor.git

vi run.py

variable defaults
verbose = 0
debug = 0
teststand = 0
n_crates = 1
amcs in a crate will have ip address 192.168.[crate].[slot]: Create the default list of n_crate crate numbers
crates = [100]
types of modules in given crate
amc13100_types = ['FC7','WFD5']
crate_types = [amc13100_types]
encoder_crate = 100

7.4.3 Usage

- 60/81 -

For instance, for a one crate system I used:

3 Run the crate montior

Then open localhost:7000 in your favorite web browser.

Note: You may need to pdate socket.io.min.js . Here's how you do it manually:

You may need to update socket.io.min.js (for reasons I'm not entirely sure of). You can get the file on socket io's client

installation webpage. Here is a cloudflare link to the version I used; you can copy this to your clipboard

Replace the contents of socket.io.min.js in your favorite text editor. For instance in vi :

Hit ggdG to erase all lines. Hit i to enter insert mode. Ctrl-V to paste the contents. Esc and :wq to save and exit.

After this, rety running the crate monitor.

July 15, 2024

encoder_slot = 8

host = 'gm26221.classe.cornell.edu'

variable defaults
verbose = 0
debug = 0
teststand = 0
n_crates = 1
amcs in a crate will have ip address 192.168.[crate].[slot]: Create the default list of n_crate crate numbers
crates = [1]
types of modules in given crate
amc13100_types = ['FC7','WFD5']
crate_types = [amc13100_types]
encoder_crate = 1
encoder_slot = 10

host = 'localhost'

python run.py

vi utcaMonitor/app/dist/js/socket.io.min.js

7.5.2 Installation Guide

- 61/81 -

https://socket.io/docs/v4/client-installation/
https://socket.io/docs/v4/client-installation/
https://cdnjs.cloudflare.com/ajax/libs/socket.io/4.7.5/socket.io.min.js

8. Networking Basics

To network the DAQ hardware together, understanding basic concepts such as IP addressing, subnetting, and network interfaces

is crucial. This page will introduce you to fundamental networking terms in linux.

8.1 Reading Network Port Information

On linux systems, you can use the command ifconfig to list all active ports on the system and some information about them.

Below is an example.

8.1.1 Example ifconfig Output

Explanation:

Interface Name (eth0):

This is the name of the network interface.

Flags:

UP : Indicates that the network interface is currently enabled and operational. When an interface is "up," it means the

operating system has activated it and it is ready to send and receive data.

BROADCAST : This flag signifies that the network interface supports broadcasting. Broadcasting allows a single packet to be sent

to all devices within the same subnet. Devices use broadcast addresses to receive these packets.

RUNNING : Indicates that the network interface is operational and actively sending or receiving data. It confirms that the

interface is functioning correctly and is capable of transferring data packets.

MULTICAST : Indicates that the network interface supports multicasting. Multicasting allows a single packet to be sent to

multiple specific recipients who have joined a multicast group. It is more efficient than broadcasting for sending data to

multiple destinations simultaneously.

MTU (mtu 1500):

Maximum Transmission Unit, the largest packet size in bytes.

Default is usually 1500 bytes.

For 10GbE links, this must be increased for efficiency. Typically to ~9000 bytes.

IPv4 Address (inet 192.168.1.100):

IP address assigned to the interface.

Netmask (netmask 255.255.255.0):

Defines the network portion of the IP address.

Broadcast Address (broadcast 192.168.1.255):

Address used for broadcasting messages.

eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
 inet 192.168.1.100 netmask 255.255.240.0 broadcast 192.168.1.255
 inet6 fe80::215:5dff:fe8f:7013 prefixlen 64 scopeid 0x20<link>
 ether 00:15:5d:8f:70:13 txqueuelen 1000 (Ethernet)
 RX packets 38935 bytes 56933483 (56.9 MB)
 RX errors 0 dropped 0 overruns 0 frame 0
 TX packets 5766 bytes 471459 (471.4 KB)
 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

•

•

•

•

•

•

•

•

•

•

•

8. Networking Basics

- 62/81 -

RX (Receive) and TX (Transmit) Packets:

Count of packets received and transmitted.

RX (Receive) and TX (Transmit) Bytes:

Total bytes received and transmitted.

8.2 Using nmcli Command Line Tools

In Red Hat-based Linux systems (like Alma, CentOS, Fedora, or RHEL), you can use the nmcli command line tool to configure

network interfaces. nmcli interacts with NetworkManager and allows you to configure network settings directly from the

terminal without editing configuration files manually.

8.2.1 Example nmcli Configuration: enp5s0 Interface

Explanation:

type ethernet : Specifies that the connection type is Ethernet. This parameter indicates that you are configuring a wired

network interface.

con-name enp5s0 : Defines the connection name (enp5s0). This is the name used to refer to the connection in nmcli . It's often

the name of the network interface (e.g., enp5s0).

ifname enp5s0 : Specifies the name of the network interface (enp5s0) that the connection applies to. This should match the

actual name of the interface as listed by nmcli device .

ipv4.addresses 192.168.1.100/24 : Sets the static IPv4 address (192.168.1.100) with the subnet mask (/24). This defines the IP

address for the network interface and its subnet.

ipv4.method manual : Specifies that the IP address configuration is static. This will prevent NetworkManager from using DHCP

to obtain an IP address.

ipv4.gateway 192.168.1.1 : Defines the default gateway (192.168.1.1) for the interface. This is the IP address of the router or

gateway used to route traffic to external networks.

802-3-ethernet.mtu 1500 : Sets the Maximum Transmission Unit (MTU) to 1500 bytes. This defines the largest packet size that

can be transmitted without fragmentation.

connection.autoconnect yes : Ensures that the network connection is automatically activated during system boot or when the

interface is brought up.

8.2.2 Additional Commands for Managing the Connection

Show the active connections:

Modify an existing connection:

This changes the IP address of the enp5s0 connection to 192.168.1.101 .

Delete a connection:

•

•

nmcli connection add type ethernet con-name enp5s0 ifname enp5s0 \
 ipv4.addresses 192.168.1.100/24 \
 ipv4.method manual \
 ipv4.gateway 192.168.1.1 \
 802-3-ethernet.mtu 1500 \
 connection.autoconnect yes

•

•

•

•

•

•

•

•

nmcli connection show

nmcli connection modify enp5s0 ipv4.addresses 192.168.1.101/24

nmcli connection delete enp5s0

8.2 Using nmcli Command Line Tools

- 63/81 -

Bring the connection up or down:

Check the status of the connection:

8.3 Using Network Scripts

In Red Hat-based Linux systems (like Alma, CentOS, Fedora, or RHEL), network interfaces are often configured using ifcfg files

located in /etc/sysconfig/network-scripts/ . These files contain key configuration parameters that define how network interfaces

behave and interact with the network. This is a deprecated feature. Modern RHEL systems use nmcli. Nonetheless, some

of our older electronics still use networks scripts.

8.3.1 Example ifcfg File: /etc/sysconfig/network-scripts/ifcfg-eth0

Explanation:

DEVICE=eth0 : Specifies the network interface name (eth0). This parameter identifies which network interface the configuration

applies to.

BOOTPROTO=static : Defines the method used to configure the IP address. static indicates that the IP address is manually

configured rather than assigned dynamically (e.g., via DHCP).

ONBOOT=yes : Ensures that the network interface (eth0) is automatically activated during system boot. Setting this to yes

ensures the interface is brought up when the system starts.

IPADDR=192.168.1.100 : Sets the static IPv4 address (192.168.1.100) for the eth0 interface. Replace this with the desired IP

address for your network configuration.

NETMASK=255.255.255.0 : Specifies the subnet mask (255.255.255.0) associated with the IP address. The subnet mask determines

which part of the IP address is the network portion and which part is the host portion.

GATEWAY=192.168.1.1 : Defines the default gateway (192.168.1.1) for the network interface. The gateway is used for routing

traffic to destinations outside the local subnet.

MTU=1500 : Sets the Maximum Transmission Unit (MTU) to 1500 bytes for the eth0 interface. MTU defines the largest packet

size that can be transmitted over the network interface without fragmentation.

8.4 Subnet Masks and Network Ranges

Masks are very important for segmenting your network so traffic is routed appropriately. There are two notations to do this:

Subnet masks like 255.255.255.0

CIDR notation like /24 Both of these do the same thing, but you'll see both used "in the wild."

Subnet Mask 255.255.255.0 (CIDR /24):

Explanation: This subnet mask (255.255.255.0) allows for up to 254 usable IP addresses within the same network.

nmcli connection up enp5s0
nmcli connection down enp5s0

nmcli device status

DEVICE=eth0
BOOTPROTO=static
ONBOOT=yes
IPADDR=192.168.1.100
NETMASK=255.255.255.0
GATEWAY=192.168.1.1
MTU=1500

•

•

•

•

•

•

•

1.

2.

•

8.3 Using Network Scripts

- 64/81 -

EXAMPLE WITH NETWORK 192.168.1.xxx :

Network Address: 192.168.1.0/24

Range of IP Addresses: 192.168.1.1 to 192.168.1.254

Subnet Mask: 255.255.255.0

Usage:

This subnet mask divides the IP address 192.168.1.0 into a network portion (192.168.1) and a host portion (xxx). The last

octet (xxx) ranges from 1 to 254 , with 0 reserved as the network address and 255 reserved as the broadcast address.

Subnet Mask 255.255.0.0 (CIDR /16):

Explanation: This subnet mask (255.255.0.0) allows for up to 65,534 usable IP addresses within the same network.

EXAMPLE WITH NETWORK 192.168.xxx.xxx :

Network Address: 192.168.0.0/16

Range of IP Addresses: 192.168.0.1 to 192.168.255.254

Subnet Mask: 255.255.0.0

Usage:

This subnet mask divides the IP address 192.168.0.0 into a network portion (192.168) and two host portions (xxx.xxx). The

third and fourth octets (xxx.xxx) range from 0.1 to 255.254 , with 0.0 reserved as the network address and 255.255 reserved

as the broadcast address.

8.4.1 Additional Examples:

Subnet Mask 255.0.0.0 (CIDR /8):

Example:

Network Address: 192.0.0.0/8

Range of IP Addresses: 192.0.0.1 to 192.255.255.254

Subnet Mask: 255.0.0.0

Usage:

This subnet mask divides the IP address 192.0.0.0 into a network portion (192) and three host portions (xxx.xxx.xxx). The

second, third, and fourth octets (xxx.xxx.xxx) range from 0.0.1 to 255.255.254 , with 0.0.0.0 reserved as the network address

and 255.255.255.255 reserved as the broadcast address.

Subnet Mask 255.255.128.0 (CIDR /17):

Example:

Network Address: 192.168.0.0/17

Range of IP Addresses: 192.168.0.1 to 192.168.127.254

Subnet Mask: 255.255.128.0

Usage:

This subnet mask divides the IP address 192.168.0.0 into a network portion (192.168.0) and a host portion (xxx). The third

octet (0.xxx) ranges from 0.1 to 127.254 , with 0.0 reserved as the network address and 127.255 reserved as the broadcast

address.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

8.4.1 Additional Examples:

- 65/81 -

8.5 Scanning a network

To identify devices and their IP addresses on your network, you can use various tools available on Linux. One of the most

common tools for network scanning is nmap .

8.5.1 Using nmap

1 Install nmap : If nmap is not already installed on your system, you can install it using the package manager for Red Hat-based

distributions.

2 Scan the Network: To scan your local network and list all active devices, use the following command. Replace 192.168.1.0/24

with your network range.

This example performs a "ping scan" on the network 192.168.1.1 - 192.168.1.254. This may take a while to complete as it has to

can ~2^8 IP addresses.

Another example:

This example performs a "ping scan" on the network 192.168.1.1 - 192.168.1.254. This will take even longer to complete as it has

to scan ~2^16 IP addresses. As a result, it might be best to screen the scan in the background and write the results to a file:

8.5.2 Using arp-scan

1 Install arp-scan :

Another useful tool for network scanning is arp-scan. This tool can also help you discover devices on your network.

2 Scan the Network:

Replace the interface with the appropriate device name for your network. You can check this using ifconfig .

December 9, 2024

sudo yum install nmap

sudo nmap -sP 192.168.1.0/24

sudo nmap -sP 192.168.0.0/16

screen -dmS nmap_scan bash -c 'sudo nmap -sP 192.168.0.0/24 > ~/nmap_scan_results.txt'

sudo yum install arp-scan

sudo arp-scan --interface=eth0 --localnet

8.5 Scanning a network

- 66/81 -

9. Debugging Common Errors

Below are some common errors and their solutions. This is not a complete list of all errors.

9.1 Initialization Errors

9.1.1 MCH: IPMI Communication Failed

Verify the MCH is connected to the DAQ computer via 1GbE. Verify you can ping the MCH:

Verify the MCH IP ODB setting is correct.

9.1.2 AMC13: T1 IP Address Read Failure

Verify the AMC13 is plugged into the appropriate slot (above the MCH, see the labeled crate picture). Try pinging T1 and T2 on

the AMC13

If not, use ipmitool to verify the AMC13 is recognized in the crate. Try to reconfigure the AMC13.

Note: I have seen cases where ipmitool -H 192.168.[crate].15 fru print will not show the AMC13, however the system still

works as intended.

9.1.3 Enabled Top SFP Ports Failure

Verify the SFP port location and FMC location ODB settings are correct. Make sure you are using SFPs (such as a Finisar SFP)

and not an SFP+ (such as Avago SFP+) in the FC7 and AMC13 optical link. Verify unconnected frontends (crates) are disabled in

the ODB.

9.1.4 AMC13: TTC Signal Absent

Verify the SamTech Cable is appropriately connected to the FC7 and bank board. You can put these in the bank backwards, see

the labeled bank image for the correct orientation. Verify the signal integrity of the 40MHz clock fed into the signal bank.

9.1.5 Link01: Invalid AMC13 SFP IP Address

Verify the SFP IP in the ODB matches the value read in AMC13Tool2.exe using

Convert this hex value to an IP and verify it matches the ODB value.

9.1.6 AMC13 Initialization Failed

This error seems to pop up in different cases. Sometimes, it's enough to simply wait 5 minute and try running the frontends

again. Another solution is to power cycle the crate.

If you don't want to power cycle the crate, you can issue a "cold reset" to the AMC13:

ping 192.168.[crate].15

ping 192.168.[crate].13
ping 192.168.[crate].14

rv 0x1c1c

cd $GM2DAQ_DIR/amc13/amc13_v1_2_18/dev_tools/amc13Config

9. Debugging Common Errors

- 67/81 -

Ensure systemVars.py looks correct. Then issue a cold reset:

Then reconfigure the AMC13; you made need to set the T1 and T2 IPs again. At the minimum you should re-initialize using

AMC13Tool2.exe.

9.1.7 TCP initialization failed

Verify the 10GbE NIC is functioning and properly connected to the AMC13. Verify the 10GbE link is properly configured. For

instance, in AMC13Tool2.exe

Convert this hex value to an IP and try pinging it, for instance

If you cannot ping this IP, check your network settings for the 10GbE NIC. Verify the IP read above matches the SFP IP ODB

value.

9.2 Alarms and Run Ending Errors

9.2.1 Alarm: CCC Run Aborted

This was a common error during g-2. At it's worst, it should occur on ~6 hour time scales. You must restart the frontends to re-

initialize the crate hardware.

9.2.2 tcp_thread: break the tcp thread loop becuase of a reading error -1

This was a common error during the 2023 test beam at PSI. This error usually occurs because the data buffer between reading in

data and processing data has filled up. I.e. midas events are being created slower than events are coming in. As a result, the

tcp_thread has nowhere to store incoming data and errors out.

This error is rate dependant. One way to fix it is to simply lower the rate. However, the DAQ has been tested and run for long

periods at ~5kHz. A better solution would be to minimize the use other processes running on the DAQ computer, particularly

those that interact with midas. For example, the publisher is a culprit for causing delays within midas.

July 8, 2024

./coldReset.py

rv 0x1c1c

ping 192.168.51.1

9.1.7 TCP initialization failed

- 68/81 -

10. Miscellaneous Information

10.1 Additional Notes

If you're feeling desperate (or perhaps lucky), you can sift through Jack Carlton's work notes. I warn you that these are not

well organized and contain lots of information not about this DAQ. However, they do contain some documentation of my

assembly and troubleshooting of this DAQ.

10.2 What is (was) g-2?

g-2 was an experiment to that examined the precession of muons that are subjected to a magnetic field to test the standard

model's prediction of muon g factor. Because many of the g-2 collaborators now work on PIONEER, it is convienent to repurpose

the data acquisition system used for g-2 for PIONEER test stands.

10.3 Initialism Cheatsheet

Initialism Meaning Example

DAQ Data Acquisition

ADC Analog-to-Digital Converter

10GbE 10 Gigabit Ethernet

AFE Analog Front End

FPGA Field Programmable Gate Array

FMC FPGA Mezzanine Card FC7 SFP Interface

CPU Central Processing Unit Intel Core i7-12700K

GPU Graphics Processing Unit NVIDIA A5000

uTCA (µTCA) Micro Telecommunications Computing Architecture

WFD Waveform Digitizer WFD5

FC Flexible Controller FC7

AMC Advanced Mezzanine Card AMC13 (also FC7 and WFD5)

MCH MicroTCA Carrier Hub

DDR Double Data Rate DDR3, DDR4 (RAM)

PCIe Peripheral Component Interconnect Express PCIe2, PCIe3, ...

SFP Small Form-factor Pluggable Finisar SFP transceiver

SFP+ Enhanced Small Form-factor Pluggable Avago SFP+ transceiver

CLI Command Line Interface

TTC Timing, Trigger, and Control

MTU Maximum Transmission Unit

IP Internet Protocol

10. Miscellaneous Information

- 69/81 -

https://jaca230.github.io/joplin_notes_page/
https://muon-g-2.fnal.gov/#:~:text=The-20Muon-20g-2D2-20experimenters,of-200.14-20parts-20per-20million.

10.4 Differential Signals

Differential signals offer several advantages over single-ended signals:

More resistant to noise: Differential signaling reduces susceptibility to noise interference, resulting in cleaner signal

transmission.

Lower supply voltages: Differential signaling allows for the use of lower supply voltages (like Low Voltage CMOS (LVCMOS)

at 3.0–3.3V), which can lead to reduced power consumption.

Higher operating frequencies: Due to better noise immunity and lower voltage swings, differential signals enable higher

operating frequencies in electronic circuits.

Read more about differential signaling on Wikipedia.

10.5 Limitations of Meinberg Card

The meinberg card seems to be limited to rates of ~2.5KHz. While this is not a critical (run ending) issue, the meinberg will have

to "catch up" at the end of runs. It may also need to be removed from the event buider (i.e. change the buffer it writes on to

something that doesn't include "BUF" at the beginning).

In a study performed on the meinberg card, we found it behaves strangley at high rates. Sometimes it "misses" events and

sometimes is has long wait periods. See the plots below.

•

•

•

10.4 Differential Signals

- 70/81 -

https://en.wikipedia.org/wiki/Differential_signalling

10.6 Port Forwarding an SSH Connection

In many cases, you will need to access a web server running on a remote machine that has no Graphical User Interface (GUI).

This can be done securely using SSH port forwarding. Below are instructions for setting up port forwarding on a RHEL Linux

machine so you can view a webpage served on localhost:8080 from your local machine with a GUI (ex. laptop).

10.6.1 Prerequisites

SSH access to the remote RHEL Linux machine.

An SSH client on your local machine. e.g. ssh command in a terminal, (you can also use PuTTY on Windows though I would

not recommend this; you can still use ssh on windows).

Ensure the remote machine is configured to allow SSH connections. The SSH service should be running, and the firewall

should permit SSH traffic (usually on port 22).

•

•

•

10.6 Port Forwarding an SSH Connection

- 71/81 -

10.6.2 Instructions

1 Ensure SSH service is running on the remote machine:

2 Configure the firewall to allow SSH connections on the remote machine:

3 Open a terminal on your local machine.

4 Establish an SSH connection with port forwarding:

Use the following command to create an SSH tunnel. Replace user with your username on the remote machine and remote_host

with the IP address or hostname of the remote machine.

This command forwards your laptop's port 8080 to the remote machine's port 8080 . Here's a breakdown of the command:

-L 8080:localhost:8080 : Specifies the local port (8080) to be forwarded to the remote port (8080 on localhost of the remote

machine).

user@remote_host : The SSH login to the remote machine.

5 Access the webpage:

Open a web browser on your laptop and navigate to:

You should see the webpage served by the remote machine on port 8080 .

10.6.3 Example

If you want to access the root user on a machine with IP 192.168.50.10:

After running this command, open a browser on your laptop and go to http://localhost:8080 to view the webpage hosted on the

remote machine.

10.6.4 Notes

Ensure that the web server on the remote machine is configured to listen on localhost:8080 and is running.

If port 8080 is already in use on your local machine, you can use a different local port (e.g., 9090) by changing the command

to -L 9090:localhost:8080 and then accessing http://localhost:9090 on your laptop.

This setup allows you to securely access the web server running on your remote RHEL machine from your local laptop using SSH

port forwarding.

10.7 2023 PSI LYSO Testbeam DAQ Installer

There is a gm2daq-installer that has been tested on RHEL7 systems. This will attempt to install the listed packages below. This

installer's purpose was to streamline installation of the 2023 PSI LYSO testbeam usage of the DAQ. WARNING: As some of

these packages have been updated, the installer may fail. Use this at your own disgression. In particular, I don't expect

the unpacker, publisher, meinberg, and gm2daq software to install correctly. If you use this tool, it would be best to install those

sudo systemctl start sshd
sudo systemctl enable sshd

 sudo firewall-cmd --permanent --add-service=ssh
 sudo firewall-cmd --reload

ssh -L 8080:localhost:8080 user@remote_host

•

•

http://localhost:8080

ssh -L 8080:localhost:8080 root@192.168.50.10

•

•

10.6.2 Instructions

- 72/81 -

https://github.com/PIONEER-Experiment/gm2daq-installer

by hand if needed by following the links. Furthermore on RHEL9 systems (such as ALMA9) , the distributed pre-compiled

binaries are more up to date, which simplifies the installation process greatly. As a result, I would only suggest using the installer

for RHEL7 systems (such as SL7 or CentOS7).

To attempt to install everything with the installer:

10.7.1 List of Installed Software

If you navigate to

git clone git@github.com:PIONEER-Experiment/gm2daq-installer.git
cd gm2daq-installer
./install.sh

cd gm2daq-installer/subprocess_scripts

10.7.1 List of Installed Software

- 73/81 -

you can install packages individually:

you can also run

Script Name Description

install_epel-release.sh Installs EPEL Release

install_openssl-devel.sh Installs OpenSSL Development Libraries

install_cmake.sh Installs CMake

install_cmake3.sh Installs CMake3

install_readline.sh Installs Readline Development Tools

install_root.sh Installs ROOT (pre-compiled binary)

install_erlang.sh Installs Erlang

install_zlib.sh Installs zlib Development Libraries

install_devtoolset-8.sh Installs Devtoolset-8

install_devtoolset-11.sh Installs Devtoolset-11

install_rh-python36.sh Installs Python 3.6

install_libXft.sh Installs libXft Development Libraries

install_libXpm.sh Installs libXpm Development Libraries

install_libXt.sh Installs libXt Development Libraries

install_libXext.sh Installs libXext Development Libraries

install_patch.sh Installs Patch Development Tools

install_libtool.sh Installs Libtool Development Tools

install_meinberg_driver.sh Installs Meinberg Driver

install_midas.sh Installs MIDAS

install_pugixml.sh Installs pugixml Development Libraries

install_boost_1_53_0.sh Installs Boost 1.53.0

install_cactus.sh Installs Cactus

install_gm2daq.sh Installs gm2daq

install_root_from_source.sh Installs ROOT (from source)

install_boost_1_70_0.sh Installs Boost 1.70.0

install_zeroMQ.sh Installs ZeroMQ Development Libraries

install_cppzmq.sh Installs C++ ZeroMQ

install_eigen.sh Installs Eigen Development Libraries

install_unpacker.sh Installs Midas Data File Unpacker

install_publisher.sh Installs Midas Data Publisher

./install.sh --skip root_from_source,zeroMQ,...

10.7.1 List of Installed Software

- 74/81 -

to skip certain packages, for example. From the list above, remove the install_ and .sh parts and add it to the comma

seperated list following the --skip flag to skip it. For instance, I would recommend trying:

10.8 FC7 Labeling

These labelings are particularly useful when configuring the CCC ODB settings

10.9 Using Screens in Linux

Screens are useful for running the DAQ because it allows you start and view multiple frontends on one terminal. You can read

more on this webpage for example. Below are a few useful screen commands:

10.9.1 Starting a Screen

10.9.2 Listing Screens

screen -S <session_name>

screen -ls

10.8 FC7 Labeling

- 75/81 -

https://www.geeksforgeeks.org/screen-command-in-linux-with-examples/

10.9.3 Stopping a Screen

To stop a screen session, first list all sessions to find the session ID:

Then, stop the desired screen session:

10.9.4 Attaching to a Screen

10.9.5 Detaching from a Screen

To detach from a screen session you have attached to, press Ctrl + a and d . This will return you to your previous shell session.

10.9.6 Scrolling up in a Screen

To scroll up in a screen session, press Ctrl + a and then [. Use the arrow keys to navigate. To exit scroll mode, press q .

10.10 Getting LD_LIBRARY_PATH Into a Screen Session

For some reason, stuffing LD_LIBRARY_PATH into a screen session is convoluted. To copy your current shell sessions

LD_LIBRARY_PATH environment variable into a screen session, you need to edit your .screenrc file for the profile you launch the

screen from. Simply run these two commands:

Now for every new screen session, your LD_LIBRARY_PATH environment variable will be copied over from your current shell session

to the new screen session. This is useful when you have custom libraries added to your LD_LIBRARY_PATH ; the environment setup

script used in the DAQ installation guide adds some custom libraries LD_LIBRARY_PATH .

10.11 The N.A.T. MCH

10.11.1 Overview

An alternative to the VadaTech MCH, it has the same functionality.

10.11.2 Configuration

See NAT MCH manual for more details. Depending on the NAT MCH version, you may be able to ssh into the NAT MCH.

In any event, you can configure the NAT MCH with telnet

From there you can follow the prompts to configure the NAT MCH. If you are having trouble finding the NAT MCH IP try pinging

or scanning the network.

screen -ls

screen -X -S <session_id> quit

screen -r <session_name>

touch ~/.screenrc
echo 'shell -/bin/bash -c "export LD_LIBRARY_PATH=$LD_LIBRARY_PATH && exec /bin/bash"' >> ~/.screenrc

sudo yum install telnet
telnet 192.68.1.41

10.9.3 Stopping a Screen

- 76/81 -

https://nateurope.com/wp-content/uploads/2022/09/NAT-MCH_UsersManual.pdf

10.12 Finisar SFP vs. Avago SFP+

SFP+s (such as Avago SFP+s) do not work with the FC7 to AMC13 link; an SFP (such as a finisar SFP) is needed. Similarly, the

10GbE links from AMC13 to the DAQ computer must use SFP+s.

10.13 Bank Signals

Copies of D0-D3 triggers are sent out of D0-D3, while D4-D7 should be configured to be input signals. The trigger input should

go to D6 (It does not have to be 1kHz). A 40MHz clock should go in D7.

10.12 Finisar SFP vs. Avago SFP+

- 77/81 -

10.14 CentOS7 Related Installation Steps

CentOS7 has reached it's EOL. Many of these steps will no longer work because package manager repo links are dead. They are

here for legacy referencing purposes only.

10.14.1 Development Tools

Overview

These tools include compilers, libraries, and other utilities that facilitate software development and installation.

Installation Guide

1 Install yum package manager

2 Update the package index:

3 Enable the EPEL repository:

4 Install Development Tools and Dependencies:

5 Install Python

Note: CentOS7 may not have python3 available in base repositories, you can install via yum install -y rh-python36 .

10.14.2 ROOT

Overview

ROOT is an open-source data analysis framework developed by CERN. It is widely used in high-energy physics for data

processing, statistical analysis, visualization, and storage. It is needed for some features of Midas.

Installation Guide (Build from source)

General installaiton guides are provided by ROOT at their Installing ROOT and Building ROOT from source pages.

1 Example building latest stable branch from source

Note: Adjust the ROOT version and the download URL as needed. Always check for the latest version on the official ROOT

website. Furthermore, if you are not building from source you are installing precompiled binaries, which may not be up to date

versions of ROOT. For specific versions, you may need to build root from source.

sudo dnf install yum

sudo yum update

sudo yum install epel-release

sudo yum groupinstall "Development Tools"
sudo yum install cmake gcc-c++ gcc binutils libX11-devel libXpm-devel libXft-devel libXext-devel

sudo yum install python3

git clone --branch latest-stable --depth=1 https://github.com/root-project/root.git root_src
mkdir root_build root_install && cd root_build
cmake -DCMAKE_INSTALL_PREFIX=../root_install ../root_src # && check cmake configuration output for warnings or errors
cmake --build . -- install -j4 # if you have 4 cores available for compilation
source ../root_install/bin/thisroot.sh # or thisroot.{fish,csh}

10.14 CentOS7 Related Installation Steps

- 78/81 -

https://root.cern.ch/
https://root.cern/install/
https://root.cern/install/build_from_source/
https://root.cern.ch/
https://root.cern.ch/

10.14.3 IPBus (Cactus)

Overview

IPBus, part of the Cactus framework, is a protocol for remote control and monitoring of hardware devices over Ethernet. It's

commonly used in high-energy DAQ systems.

Installation Guide

1 Remove previous version (if applicable):

2 Download yum repo file:

3 Install uHAL:

Note: I personally had trouble getting this to work on CentOS7 and had to resort to building from source (see below).

Example building from source

See Compiling and installing from source, an example is below:

Note: You may not need to specify EXTERN_BOOST_INCLUDE_PREFIX , EXTERN_BOOST_LIB_PREFIX , EXTERN_PUGIXML_INCLUDE_PREFIX ,

EXTERN_PUGIXML_LIB_PREFIX . Otherwise, you may need to find where pugixml and boost were installed and replace the paths above

respectively.

10.15 Old Network Scripts

Network scripts are a deprecated feature of red hat linux systems. Now, a connection manager is used via nmcli commands. For

reference, the old network scripts are here.

10.15.1 MCH Network script example

For example, this is how the UKY teststand 1GbE NIC is configured to communicate with multiple crate using an ethernet

splitter.

sudo yum groupremove uhal

sudo curl https://ipbus.web.cern.ch/doc/user/html/_downloads/ipbus-sw.centos7.repo -o /etc/yum.repos.d/ipbus-sw.repo

sudo yum clean all
sudo yum groupinstall uhal

sudo yum install pugixml-devel
git clone --depth=1 -b v2.7.3 --recurse-submodules https://github.com/ipbus/ipbus-software.git
cd ipbus-software
make -j$(nproc) EXTERN_BOOST_INCLUDE_PREFIX="/opt/boost/include" EXTERN_BOOST_LIB_PREFIX="/opt/boost/lib" EXTERN_PUGIXML_INCLUDE_PREFIX="/usr/local/include"
EXTERN_PUGIXML_LIB_PREFIX="/usr/local/lib64/"
sudo make install -j$(nproc)

vi /etc/sysconfig/network-scripts/ifcfg-{port name}

#
Connect to MCH
#
TYPE=Ethernet
BOOTPROTO=static
IPADDR=192.168.1.100
NETMASK=255.255.0.0
IPV4_FAILURE_FATAL=no
IPV6INIT=no
IPV6_AUTOCONF=yes
IPV6_DEFROUTE=yes
IPV6_PEERDNS=yes
IPV6_PEERROUTES=yes
IPV6_FAILURE_FATAL=no

10.14.3 IPBus (Cactus)

- 79/81 -

https://ipbus.web.cern.ch/
https://ipbus.web.cern.ch/doc/user/html/software/install/compile.html

In particular, the IP_ADDR and NETMASK sections are important. Here the port is specified to accept any traffic on the

192.168.51.xxx subnet. See the networking page for more details.

10.15.2 AMC13 Network script example

For example, this is how one of the UKY teststand 10GbE NIC is configured to communicate with the AMC13.

In particular, the IP_ADDR , NETMASK , and MTU sections are important. Here the port is specified to accept any traffic on the

192.168.51.xxx subnet. See the networking page for more details.

10.16 Python2

10.16.1 Overview

Some scripts are written for configuring the DAQ are written in python2. To install python2 on ALMA9, you must install from

source. Afterwards, you can run python2 scripts with python2.7 {script name} . Using python2 is not recommended due to it

reaching it's EOL some time ago. It's better to manually edit this scripts run using python3

10.16.2 Installation Guide

1 Install required dependencies

First, ensure that the system has the necessary development tools and libraries for compiling Python from source:

2 Download Python 2.7.18 source code

Next, download the Python 2.7.18 tarball, which is the last stable version of Python 2

3 Extract and compile Python

Extract the downloaded tarball, configure the build environment, and compile Python

NAME=enp5s0
DEVICE=enp5s0
ONBOOT=yes

vi /etc/sysconfig/network-scripts/ifcfg-{port name}

#
Connect to AMC13
#
TYPE=Ethernet
BOOTPROTO=static
IPADDR=192.168.51.100
NETMASK=255.255.255.0
IPV4_FAILURE_FATAL=no
IPV6INIT=no
IPV6_AUTOCONF=yes
IPV6_DEFROUTE=yes
IPV6_PEERDNS=yes
IPV6_PEERROUTES=yes
IPV6_FAILURE_FATAL=no
NAME=enp1s0f0
DEVICE=enp1s0f0
ONBOOT=yes
AUTOCONNECT_PRIORITY=-999
MTU=9000

sudo dnf groupinstall -y "Development Tools"
sudo dnf install -y gcc openssl-devel bzip2-devel libffi-devel zlib-devel

cd /path/to/packages
wget https://www.python.org/ftp/python/2.7.18/Python-2.7.18.tgz

tar xzf Python-2.7.18.tgz
cd Python-2.7.18
./configure --enable-optimizations
make

10.15.2 AMC13 Network script example

- 80/81 -

Note: During the tests, I experienced some errors. I was able to Ctrl-C to cancel these and continue without errors

4 Install Python 2.7

Install the compiled version of Python 2.7 on your system:

Using altinstall ensures that the new version does not overwrite the default python command on your system.

5 Verify installation

6 Cleanup:

February 21, 2025

sudo make altinstall

python2.7 --version

rm -rf Python-2.7.18.tgz
rm -rf Python-2.7.18

10.16.2 Installation Guide

- 81/81 -

	g-2 modified DAQ Manual
	1. Welcome to the g-2 Modified DAQ Manual
	1.1 PDF Version
	1.2 Contact

	2. Hardware Documentation
	2.1 General Hardware Overview
	2.1.1 Conceptual Diagram (One Crate System)
	2.1.2 Labled Picture (One Crate System)

	2.2 IPMI
	2.2.1 Overview
	2.2.2 Features of IPMI
	2.2.3 Common IPMI Tools
	2.2.4 Example Commands Using ipmitool

	2.3 1GbE NIC (Gigabit Ethernet Network Interface Card)
	2.3.1 Overview
	2.3.2 Configuration

	2.4 10GbE NIC (10 Gigabit Ethernet Network Interface Card)
	2.4.1 Overview
	2.4.2 Configuration

	2.5 µTCA Crate (Micro Telecommunications Computing Architecture Crate)
	2.5.1 Overview
	2.5.2 Configuration

	2.6 MCH (MicroTCA Carrier Hub)
	2.6.1 Overview
	2.6.2 Wired Connections
	1GbE Ethernet Connection

	2.6.3 Configuration
	Changing MCH Network Settings

	2.7 WFD5 (Waveform Digitizer)
	2.7.1 Overview
	2.7.2 Wired Connections
	Pentabus Cable Input Signal

	2.7.3 Configuration
	Reading IP Address
	Changing IP Address
	Reading Status
	Updating Firmware

	2.8 FC7 (Flexible Controller)
	2.8.1 Overview
	2.8.2 FMCs
	SFP Interface
	Trigger and Clock Input Interface

	2.8.3 Wired Connections
	Optical Link to AMC13
	Samtech Ribbon cable to Bank Board

	2.8.4 Configuration
	Reading IP Address
	Changing IP Address
	Reading Status
	Updating Firmware

	2.9 AMC13 (Advanced Mezzanine Card)
	2.9.1 Overview
	2.9.2 Wired Connections
	Optical Link to FC7
	10GbE Link to DAQ computer

	2.9.3 Configuration
	Reading IP Address
	Changing IP Address
	Building AMC13Tool2.exe
	Configuring the AMC13 with AMC13Tool2.exe
	Updating Firmware

	2.10 Meinberg Card (TCR180PEX or similar)
	2.10.1 Overview
	2.10.2 Wired Connections
	SMA to D9 Connector

	2.10.3 Configuration

	3. Software Dependencies
	3.1 PIONEER Experiment Repositories
	3.1.1 Contact for Access

	3.2 Setting Up a GitHub SSH Token on RHEL7/9 Systems
	3.2.1 1. Generate an SSH Key Pair
	3.2.2 2. Add the SSH Key to the SSH-Agent
	3.2.3 3. Add the SSH Key to Your GitHub Account
	3.2.4 4. Test Your SSH Connection
	3.2.5 Example Steps in Terminal

	3.3 Development Tools
	3.3.1 Overview
	3.3.2 Installation Guide

	3.4 ipmitool
	3.4.1 Overview
	3.4.2 Installation Guide

	3.5 ROOT
	3.5.1 Overview
	3.5.2 Installation Guide
	Using yum Package Manager
	Building from source

	3.6 Midas
	3.6.1 Overview
	3.6.2 Installation Guide

	3.7 Boost
	3.7.1 Overview
	3.7.2 Installation Guide
	Using yum Package Manager
	Install Boost 1.76 from Source

	3.8 IPBus (Cactus)
	3.8.1 Overview
	3.8.2 Installation Guide
	Using yum Package Manager
	Example building from source

	3.9 System Monitor
	3.9.1 Overview
	3.9.2 Installation Guide

	3.10 Meinberg
	3.10.1 Overview
	3.10.2 Installation Guide

	4. Installing and Running g-2 modified DAQ
	4.1 Overview
	4.1.1 Software Diagram
	MasterGM2
	CaloReadoutAMC13
	Event Builder

	4.2 Installer
	4.3 Manual Installation Guide
	4.4 Running the Frontends
	4.4.1 Starting Frontends "by Hand"
	Master Frontend
	AMC13 Readout Frontends
	Event Builder Frontend

	4.4.2 Screening the Frontends
	Master Frontend
	AMC13 Readout Frontends
	Event Builder Frontend

	4.4.3 Startup Scripts on Midas Programs Page

	5. Midas Online Data Base (ODB) Configuration
	5.1 ODB basics
	5.1.1 Accessing the ODB
	Command line interface
	Via Midas Webpage

	5.1.2 General ODB Configuration Examples
	Toggle Logger Data Writing
	Change Logger Data Writing Directory
	Change Data Buffer Logger Writes to File
	Toggle Logger to generate ODB backups for each run
	Logger Max number of events per run
	Logger File name key
	Logger Run Duration
	Logger Subrun Duration
	Logger Subrun Byte Limit
	Change Webpage Port
	Disable a Frontend
	Change the Data Buffer for a Frontend
	Changing Run Number

	5.2 g-2 Modified DAQ Specific ODB Configuration
	5.2.1 Master Frontend ODB settings
	Trigger Source
	Front End Offset
	Encoder Front End

	5.2.2 AMC13 Readout Frontend ODB settings
	Send to Event Builder
	MCH IP Address
	CCC: FC7 Slot Number (1-12)
	CCC: FMC Location (top,bottom)
	CCC: FMC SFP Number (1-8)
	AMC13 10GbE Link Enable
	AMC13 SFP IP Address
	AMC13 SFP Port Number
	AMC13 T1 Firmware Version Required
	AMC13 T2 Firmware Version Required
	AMC13 T1 Address Table Location
	AMC13 T2 Address Table Location
	Enable FC7
	FC7 Address Table
	FC7 Board Type
	FC7 Firmware Version Required
	Internal Trigger
	Internal Trigger Period (us)
	Internal Trigger Pulse Width (ns)
	TTC deadtime (ns)
	Enabled WFD5
	WFD5 Address Table
	WFD5 Master Firmware Version
	WFD5 Channel Firmware Version
	WFD5 Digitization Frequency
	WFD5 Circular Buffer Mode Enabled
	WFD5 Waveform Length
	WFD5 Waveform Presamples
	WFD5 Channel Enabled
	WFD5 Channel Input Signal Offset
	TQ methods GPU Bank Processing
	WFD5 Async Mode
	WFD5 Async Mode Enabled
	WFD5 Async Mode Enabled (in another place)
	TTC Async Mode Enabled

	6. Some Midas Information and Tips
	6.1 Data Storage location
	6.2 Multiple Experiments on One Midas Installation
	6.3 Midas Files to ROOT Files (unpacker)
	6.4 Recovering from a Corrupted ODB
	6.5 Fixing a corrupted ODB by hand
	6.5.1 Fixing a persistently corrupted ODB by hand

	6.6 Loading an ODB save
	6.7 Changing the ODB size
	6.8 Adding Program Startup Scripts

	7. Additional Software
	7.1 Eigen
	7.1.1 Overview
	7.1.2 Installation Guide
	Via yum (ALMA9)
	From Source (CentOS7)

	7.2 Midas Event Unpacker
	7.2.1 Overview
	7.2.2 Installation Guide
	7.2.3 Usage

	7.3 Publisher
	7.3.1 Overview
	7.3.2 General Publisher
	Installation Guide

	7.3.3 Midas Event Publisher
	Installation Guide

	7.3.4 Usage
	"By Hand"
	"Cronjob" Screen

	7.4 Basic DQM
	7.4.1 Overview
	7.4.2 Installation Guide
	7.4.3 Usage
	"By Hand"
	Screening Script

	7.5 Crate Monitor
	7.5.1 Overview
	7.5.2 Installation Guide

	8. Networking Basics
	8.1 Reading Network Port Information
	8.1.1 Example ifconfig Output
	Explanation:

	8.2 Using nmcli Command Line Tools
	8.2.1 Example nmcli Configuration: enp5s0 Interface
	Explanation:

	8.2.2 Additional Commands for Managing the Connection

	8.3 Using Network Scripts
	8.3.1 Example ifcfg File: /etc/sysconfig/network-scripts/ifcfg-eth0
	Explanation:

	8.4 Subnet Masks and Network Ranges
	Subnet Mask 255.255.255.0 (CIDR /24):
	Example with Network 192.168.1.xxx:

	Subnet Mask 255.255.0.0 (CIDR /16):
	Example with Network 192.168.xxx.xxx:

	8.4.1 Additional Examples:
	Subnet Mask 255.0.0.0 (CIDR /8):
	Subnet Mask 255.255.128.0 (CIDR /17):

	8.5 Scanning a network
	8.5.1 Using nmap
	8.5.2 Using arp-scan

	9. Debugging Common Errors
	9.1 Initialization Errors
	9.1.1 MCH: IPMI Communication Failed
	9.1.2 AMC13: T1 IP Address Read Failure
	9.1.3 Enabled Top SFP Ports Failure
	9.1.4 AMC13: TTC Signal Absent
	9.1.5 Link01: Invalid AMC13 SFP IP Address
	9.1.6 AMC13 Initialization Failed
	9.1.7 TCP initialization failed

	9.2 Alarms and Run Ending Errors
	9.2.1 Alarm: CCC Run Aborted
	9.2.2 tcp_thread: break the tcp thread loop becuase of a reading error -1

	10. Miscellaneous Information
	10.1 Additional Notes
	10.2 What is (was) g-2?
	10.3 Initialism Cheatsheet
	10.4 Differential Signals
	10.5 Limitations of Meinberg Card
	10.6 Port Forwarding an SSH Connection
	10.6.1 Prerequisites
	10.6.2 Instructions
	10.6.3 Example
	10.6.4 Notes

	10.7 2023 PSI LYSO Testbeam DAQ Installer
	10.7.1 List of Installed Software

	10.8 FC7 Labeling
	10.9 Using Screens in Linux
	10.9.1 Starting a Screen
	10.9.2 Listing Screens
	10.9.3 Stopping a Screen
	10.9.4 Attaching to a Screen
	10.9.5 Detaching from a Screen
	10.9.6 Scrolling up in a Screen

	10.10 Getting LD_LIBRARY_PATH Into a Screen Session
	10.11 The N.A.T. MCH
	10.11.1 Overview
	10.11.2 Configuration

	10.12 Finisar SFP vs. Avago SFP+
	10.13 Bank Signals
	10.14 CentOS7 Related Installation Steps
	10.14.1 Development Tools
	Overview
	Installation Guide

	10.14.2 ROOT
	Overview
	Installation Guide (Build from source)

	10.14.3 IPBus (Cactus)
	Overview
	Installation Guide
	Example building from source

	10.15 Old Network Scripts
	10.15.1 MCH Network script example
	10.15.2 AMC13 Network script example

	10.16 Python2
	10.16.1 Overview
	10.16.2 Installation Guide

